首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.  相似文献   

2.
The primary objective of this study was to ascertain the anti-biofilm and anti-virulence properties of sub-minimum inhibitory concentration (MIC) levels of eugenol against the standard strain PAO1 and two multi-drug resistant P. aeruginosa clinical isolates utilizing quorum sensing inhibition (QSI). Eugenol at 400 μM significantly reduced biofilm formation on urinary catheters and the virulence factors (VF) including extracellular polysaccharides, rhamnolipid, elastase, protease, pyocyanin, and pyoverdine (p < 0.001). Further, eugenol exhibited a marked effect on the production of QS signals (AIs) (p < 0.001) without affecting their chemical integrity. In silico docking studies demonstrated a stable molecular binding between eugenol and QS receptor(s) in comparison with respective AIs. Investigation on reporter strains confirmed the competitive binding of eugenol to a QS receptor (LasR) as the possible QSI mechanism leading to significant repression of QS associated genes besides the VF genes (p < 0.001). This study provides insights, for the first time, into the mechanism of the anti-virulence properties of eugenol.  相似文献   

3.
4.
Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates.  相似文献   

5.
The current study is to evaluate the inhibition of biofilm formation and quorum sensing activity of isolated 3, 5, 7-Trihydroxyflavone (TF) from A.scholaris leaf extract against Pseudomonas aeruginosa. The effects of isolated TF on quorum sensing-regulated virulence factors production such as swimming motility, pyocyanin production, proteolytic, EPS, metabolic assay and inhibition of biofilm formation against P.aeruginosa was evaluated by standard protocols. In addition, the interaction between the isolated TF and active sites of QS- gene (LasI/rhlI, LasR/rhlR, and AHLase) in P.aeruginosa was evaluated by molecular docking studies using AutoDock Tools version 1.5.6. Based on the structural elucidation of the isolated compound was identified as 3, 5, 7-Trihydroxyflavone. Consequently, the isolated TF shows a significant reduction of biofilm formation through the inhibition of QS-dependent phenotypes such as pyocyanin production, proteolytic, swimming motility, EPS activities against P.aeruginosa in a dose-dependent manner. Molecular docking analysis of isolated TF can interfere the signaling [N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL)] molecules in P.aeruginosa by QS genes (LasI, LasR, rhlI, and AHLase) regulation. The isolated TF compound from A.scholaris reveals a greater potential to inhibit biofilm and QS dependent virulence factor production in P.aeruginosa. Docking interaction studies of TF-LasR complex express higher binding affinity than the other QS gene in P.aeruginosa.  相似文献   

6.
7.
Inhibitors of 3OC12, an initial signal molecule of the quorum sensing (QS) signaling cascade in Pseudomonas aeruginosa have been developed. Eight inhibitor candidates were synthesized by substituting the head part of 3-oxododecanoyl-homoserine lactone (3OC12) with different aromatic rings, and their docking poses and scores (binding energies) were predicted by in silico modeling study. All compounds gave better docking scores than 3OC12 and good inhibition effects on LasR activity in the in vivo bioassay. Like the modifications in the tail part of 3OC12 in our previous study Kim et al. (2008), the head-part modifications also showed inhibition activity in a fairly good proportion to the docking scores from the modeling analysis. This implies that the head part of 3OC12 also contributes significantly to forming the active conformation of the LasR-3OC12 complex, and its modification could effectively induce the inactive conformation of the complex. We suggest that the head part of 3OC12 is also a good target moiety to develop the structure-based Pseudomonas QS inhibitors.  相似文献   

8.
Bacterial chemical communication, through a process called quorum sensing (QS), plays a central role in infection in numerous bacterial pathogens. Quorum sensing in Pseudomonas aeruginosa employs a series of small molecule receptors including the master QS regulator, LasR. In this study we investigate a non-natural triaryl series of LasR ligands using a combination of structure activity relationship studies and computational modeling. These studies have enabled the identification of key structural requirements for ligand binding and have revealed a new strategy for inducing the therapeutically relevant antagonism of LasR.  相似文献   

9.
Bacteria regulate their pathogenicity and biofilm formation through quorum sensing (QS), which is an intercellular communication system mediated by the binding of signaling molecules to QS receptors such as LasR. In this study, a range of dihydropyrrolone (DHP) analogues were synthesized via the lactone-lactam conversion of lactone intermediates. The synthesized compounds were tested for their ability to inhibit QS, biofilm formation and bacterial growth of Pseudomonas aeruginosa. The compounds were also docked into a LasR crystal structure to rationalize the observed structure-activity relationships. The most active compound identified in this study was compound 9i, which showed 63.1% QS inhibition of at 31.25?µM and 60% biofilm reduction at 250?µM with only moderate toxicity towards bacterial cell growth.  相似文献   

10.
Quorum sensing (QS) plays a crucial role in different stages of biofilm development, virulence production, and subsequently to the growth of bacteria in food environments. Biofilm mediated spoilage of food is one of the ongoing challenge faced by the food industry worldwide as it incurs substantial economic losses and leads to various health issues. In the present investigation, we studied the interference of quorum sensing, its regulated virulence functions, and biofilm in food-associated bacteria by colorant azorubine. In vitro bioassays demonstrated significant inhibition of QS and its coordinated virulence functions in Chromobacterium violaceum 12472 (violacein) and Pseudomonas aeruginosa PAO1 (elastase, protease, pyocyanin, and alginate). Further, the decrease in the production EPS (49–63%) and swarming motility (61–83%) of the pathogens was also recorded at sub-MICs. Azorubine demonstrated broad-spectrum biofilm inhibitory potency (50–65%) against Chromobacterium violaceum, Pseudomonas aeruginosa, E. coli O157:H7, Serratia marcescens, and Listeria monocytogenes. ROS generation due to the interaction between bacteria and azorubine could be responsible for the biofilm inhibitory action of the food colorant. Findings of the in vitro studies were well supported by molecular docking and simulation analysis of azorubine and QS virulence proteins. Azorubine showed strong binding to PqsA as compared to other virulent proteins (LasR, Vfr, and QscR). Thus, it is concluded that azorubine is a promising candidate to ensure food safety by curbing the menace of bacterial QS and biofilm-based spoilage of food and reduce economic losses.  相似文献   

11.
An ethyl acetate extracts isolated from a marine fungal strain, Penicillium chrysogenum DXY-1, obtained from marine sediments surrounding the East Sea, was found to exhibit anti-quorum sensing (anti-QS) activity. Interestingly, a novel active compound was identified as tyrosol by the purification and structural characterization. At a concentration of 0.5 mg/mL, tyrosol decreased QS-regulated violacein production in Chromobacterium violaceum CV026 by 53.5% and decreased QS-regulated pyocyanin production, elastase activity and proteolytic activity in Pseudomonas aeruginosa PA01 by 63.3%, 57.8% and 9.9%, respectively. SEM images showed that tyrosol inhibited biofilm formation in P. aeruginosa PA01 without having any effect on bacterial growth. Molecular docking results revealed that the natural signal molecule C6HSL and tyrosol bound to different receptor pockets of CviR, and tyrosol inhibited the QS activity of CviR in C. violaceum by binding to the DNA-binding domain and blocking pathogenic gene expression. All the data suggest that tyrosol may act as a potential inhibitor of the QS systems to solve the looming crisis of bacterial resistance. We believe that there are other active compounds with relatively high anti-QS activity or synergistic inhibitory effects on QS in the crude extract, which warrants further research.  相似文献   

12.
The development of bacterial resistance to chemical therapy poses a severe danger to efficacy of treating bacterial infections. One of the key factors for resistance to antimicrobial medications is growth of bacteria in biofilm. Quorum sensing (QS) inhibition was created as an alternative treatment by developing novel anti-biofilm medicines. Cell-cell communication is impeded by QS inhibition, which targets QS signaling pathway. The goal of this work is to develop newer drugs that are effective against Pseudomonas aeruginosa by decreasing QS and acting as anti-biofilm agents. In this investigation, N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h were designed and synthesized in good yields. Further, molecular docking analyses revealed that binding affinity values were founded −11.2 to −7.6 kcal/mol that were moderate to good. The physicochemical properties of these prepared compounds were investigated through in-silico method. Molecular dynamic simulation was also used to know better understanding of stability of the protein and ligand complex. Comparing N-(benzo[d]thiazol-2-yl)benzamide 3a to salicylic acid (4.40±0.10) that was utilised as standard for quorum sensing inhibitor, the anti-QS action was found greater for N-(benzo[d]thiazol-2-yl)benzamide 3a (4.67±0.45) than salicylic acid (4.40±0.10). Overall, research results suggested that N-(benzo[d]thiazol-2-yl)benzamide/N-(thiazol-2-yl)benzamide derivatives 3a-h may hold to develop new quorum sensing inhibitors.  相似文献   

13.
Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.  相似文献   

14.
The biofilm formation of Pseudomonas aeruginosa, an opportunistic human pathogen, is developed by cell-to-cell signaling, so-called quorum sensing (QS). To control the biofilm formation, we designed and synthesized new QS inhibitors of P. aeruginosa based on the structure of the previously known QS inhibitor, furanone. Newly synthesized compounds were a series of analogs of (5-oxo-2,5-dihydrofuran-3-yl)methyl alkanoate, and the structures of all six synthesized compounds was confirmed by NMR and GC/MS analyses. These new QS inhibitor candidates could remarkably inhibit both Pseudomonas QS signaling and biofilm formation, which were assayed by using the recombinant reporter system and flow cell confocal microscopy. The degree of QS inhibition by these new inhibitors varied from 20% to 90%. For the profound understanding about inhibition mechanism, we tried to estimate the binding energy between QS receptor, LasR, and our inhibitors from the in silico modeling system. The predicted binding pattern from the modeling system and our experimental data about QS inhibition were in good agreement. From these results, we suggest a new approach to develop the QS inhibitors and biofilm control agents based on structural modeling.  相似文献   

15.
4-Anilinoquinazolines as an important class of protein kinase inhibitor are widely investigated for epidermal growth factor receptor (EGFR) tyrosine kinase or epidermal growth factor receptor 2 (HER2) inhibition. A series of novel 6-salicyl-4-anilinoquinazoline derivatives 9–27 were prepared and evaluated for their EGFR/HER2 tyrosine kinase inhibitory activity as well as their antiproliferative properties on three variant cancer cell lines (A431, MCF-7, and A549). The bioassay results showed most of the designed compounds exhibited moderate to potent in vitro inhibitory activity in the enzymatic and cellular assays, of which compound 21 revealed the most potent dual EGFR/HER2 inhibitory activity, with IC50 values of 0.12 µM and 0.096 µM, respectively, comparable to the control compounds Erlotinib and Lapatinib. Furthermore, the kinase selectivity profile of 21 was accessed and demonstrated its good selectivity over the majority of the close kinase targets. Docking simulation was performed to position compound 21 into the EGFR/HER2 active site to determine the probable binding pose. These new findings along with molecular docking observations could provide an important basis for further development of compound 21 as a potent EGFR/HER2 dual kinase inhibitor.  相似文献   

16.
17.
QscR is a quorum‐sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR‐type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo‐protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3‐oxododecanoyl‐homoserine lactone (3OC12‐HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell‐based assay using QscR‐overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS‐related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose‐dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12‐HSL‐dependent QscR activity in vitro at a concentration of 50‐fold molar excess over 3OC12‐HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR‐type receptor proteins. Biotechnol. Bioeng. 2010; 106: 119–126. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Abstract

Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.  相似文献   

19.
LytB or IspH is an indispensable enzyme and a suitable drug target of Plasmodium falciparum that participate in isoprenoid biosynthesis of nonmevalonate pathway (MEP). Recently, we have investigated the structural dynamics of Plasmodium LytB and proposed some novel diphosphate‐based inhibitors using molecular modeling and docking studies. Here, we have tried to characterize those previously screened molecules by quantitative structure activity relationships and pharmacophore‐based analyses, as well as validated the dynamics of their interactions with LytB protein. Five total compounds having PubChem CID 516 , 125696 , 165275 , 448012 , and 9921431 were predicted with significant inhibitory activity by quantitative structure activity relationships and pharmacophore models. Again, the molecular dynamics simulation results showed that these five compounds are able to form stable complexes with the receptor through many direct and water mediated interactions. The binding free energies calculated by Poisson‐Boltzmann surface area method resulted within the range between ?99.77 and ? 43.74 kcal/mol, which favoured their profound inhibitory affinity. Residues of LytB like His41, His74, Ser222, Ser223, and Asn224 in LytB were the main protagonists in contributing the majority of interaction energies to the ligands. Finally, the ADMET, toxicity, and drug‐likeness scores also affirm these compounds to be considered for further development of new antimalarial inhibitor in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号