首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   

2.
The activity of pure calf-liver and Escherichia coli thioredoxin reductases decreased drastically in the presence of NADPH or NADH, while NADP+, NAD+ and oxidized E. coli thioredoxin activated both enzymes significantly, particularly the bacterial one. The loss of activity under reducing conditions was time-dependent, thus suggesting an inactivation process: in the presence of 0.24 mM NADPH the half-lives for the E. coli and calf-liver enzymes were 13.5 and 2 min, respectively. Oxidized E. coli thioredoxin fully protected both enzymes from inactivation, and also promoted their complete reactivation after only 30 min incubation at 30° C. Lower but significant protection and reactivation was also observed with NADP+ and NAD+. EDTA protected thioredoxin reductase from NADPH inactivation to a great degree, thus indicating the participation of metals in the process; EGTA did not protect the enzyme from redox inactivation. Thioredoxin reductase was extensively inactivated by NADPH under aerobic and anaerobic conditions, thus excluding the participation of O2 or oxygen active species in redox inactivation. The loss of thioredoxin reductase activity promoted by NADPH was much faster and complete in the presence of NAD+ glycohydrolase, thus suggesting that inactivation was related to full reduction of the redox-active disulfide. Those results indicate that thioredoxin reductase activity can be modulated in bacteria and mammals by the redox status of NADP(H) and thioredoxin pools, in a similar way to glutathione reductase. This would considerably expand the regulatory potential of the thioredoxin-thioredoxin reductase system with the enzyme being self-regulated by its own substrate, a regulatory protein.Abbreviations DTNB 5,5-dithiobis(2-nitrobenzoate) - EGTA Ethylenglycoltetraacetic Acid - TNB 5-thio-2-nitrobenzoate - Trx Thioredoxin - Trx(SH)2 Reduced Thioredoxin - Trx-S2 Oxidized Thioredoxin  相似文献   

3.
The steady-state levels and redox states of pyridine nucleotide pools have been studied in yeast as a function of external growth conditions. Yeast grown aerobically on 0.8% glucose show two distinct phases of logarithmic growth, a first phase utilizing glucose with ethanol accumulation, and a second phase utilizing ethanol. During growth on glucose, the size of the NADP pool (NADP+ + NADPH) is maintained at approximately 12% the size of the NAD pool (NAD+ + NADH). Upon exhaustion of glucose, the mechanism(s) that maintain the levels of NADP relative to NAD are altered, resulting in a rapid 2- to 2.5-fold decrease in the size of the NADP pool relative to the size of the NAD pool. The lower levels of NADP are maintained during growth on ethanol. The NAD pool is approximately 50% NADH during both the glucose and ethanol phases of growth, while the NADP pool is approximately 67 and 48% NADPH during the glucose and ethanol phases of growth, respectively. Rapid media transfer experiments show that the decrease in NADP is reversible, that it does not require the net synthesis of pyridine nucleotide or protein, and that changes in the size of the NADP pool relative to the total pyridine nucleotide pool are correlated with changes in the redox state of the NADP pool.  相似文献   

4.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

5.
Pseudomonas putida was grown on glucose and gluconate under different conditions with limiting amounts of carbon and nitrogen. The activities of some enzymes were determined in the periplasmic and intracellular fractions. The results indicate that malate enzyme (l-malate: NADP+ oxidoreductase, oxalacetate-decarboxylating EC 1.1.1.40) may function either as an NADPH-generating system or one of intracellular hydrogen transport. For determination of the effect of NADPH and the probable reaction mechanism by which NADPH produces this effect, kinetic studies with the purified enzyme were carried out. Malate enzyme showed hyperbolic saturation curves with respect to both substrates, malate and NADP, with Km values of 7.73 (±1.8)×10–2 mM and 1.08 (±0.3) mM for NADP andl-malate, respectively, obtained by double reciprocal plots.  相似文献   

6.
Simon Hald 《BBA》2008,1777(5):433-440
When plants experience an imbalance between the absorption of light energy and the use of that energy to drive metabolism, they are liable to suffer from oxidative stress. Such imbalances arise due to environmental conditions (e.g. heat, chilling or drought), and can result in the production of reactive oxygen species (ROS). Here, we present evidence for a novel protective process — feedback redox regulation via the redox poise of the NADP(H) pool. Photosynthetic electron transport was studied in two transgenic tobacco (Nicotiana tabacum) lines — one having reduced levels of ferredoxin NADP+-reductase (FNR), the enzyme responsible for reducing NADP+, and the other reduced levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the principal consumer of NADPH. Both had a similar degree of inhibition of carbon fixation and impaired electron transport. However, whilst FNR antisense plants were obviously stressed, with extensive bleaching of leaves, GAPDH antisense plants showed no visible signs of stress, beyond having a slowed growth rate. Examination of electron transport in these plants indicated that this difference is due to feedback regulation occurring in the GAPDH but not the FNR antisense plants. We propose that this reflects the occurrence of a previously undescribed regulatory pathway responding to the redox poise of the NADP(H) pool.  相似文献   

7.
Bacillus subtilis yumC encodes a novel type of ferredoxin‐NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH‐thioredoxin reductase (TdR) and TdR‐like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C‐terminal extension, not found in E. coli TdR but in TdR‐like protein from T. thermophilus HB8, covers the re‐face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD‐binding region and His324 in the C‐terminal extension stack on the si‐ and re‐faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid‐type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid‐type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2′‐phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re‐face of FAD is hardly relevant to the nucleotide selectivity.  相似文献   

8.
We measured both pyridine nucleotide levels and ribonucleotide reductase-specific activity in Yoshida ascites hepatoma cells as a function of growth in vivo and during recruitment from non-cycling to cycling state in vitro. Oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADP) levels remained unchanged during tumour growth, while NADP+ and reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels were very high in exponentially growing cells and markedly decreased in the resting phase. Ribonucleotide reductase activity paralleled NADP(H) (NADP+ plus NADPH) intracellular content. The concomitant increase in both NADP(H) levels and ribonucleotide reductase activity was also observed during G1-S transition in vitro. Cells treated with hydroxyurea showed a comparable correlation between the pool size of NADP(H) and ribonucleotide reductase activity. On the basis of these findings, we suggest that fluctuations in NADP(H) levels and ribonucleotide reductase activity might play a critical role in cell cycle regulation.  相似文献   

9.
Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide‐resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide‐resistant respiration was also accompanied by the increase of plastid NADPH/NADP+ ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin–Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX‐derived plastidial NADPH/NADP+ ratio change. Further, our results thus revealed a molecular mechanism of chloroplast–mitochondria interactions.  相似文献   

10.
We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP+ to NADPH by ferredoxin–NADP+-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8 ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2 ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP+ + NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin–Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales.  相似文献   

11.
Redox interconversion of glutathione reductase was studiedin situ withS. cerevisiae. The enzyme was more sensitive to redox inactivation in 24 hour-starved cells than in freshly-grown ones. While 5 μM NADPH or 100 μM NADH caused 50% inactivation in normal cells in 30 min, 0.75 μM NADPH or 50 μM NADH promoted a similar effect in starved cells. GSSG reactivated the enzyme previously inactivated by NADPH, ascertaining that the enzyme was subjected to redox interconversion. Low EDTA concentrations fully protected the enzyme from NADPH inactivation, thus confirming the participation of metals in such a process. Extensive inactivation was obtained in permeabilized cells incubated with glucose-6-phosphate or 6-phosphogluconate, in agreement with the very high specific activities of the corresponding dehydrogenases. Some inactivation was also observed with malate, L-lactate, gluconate or isocitrate in the presence of low NADP+ concentrations. The inactivation of yeast glutathione reductase has also been studiedin vivo. The activity decreased to 75% after 2 hours of growth with glucono-δ-lactone as carbon source, while NADPH rose to 144% and NADP+ fell to 86% of their initial values. Greater changes were observed in the presence of 1.5 μM rotenone: enzymatic activity descended to 23% of the control value, while the NADH/NAD+ and NADPH/NADP+ ratios rose to 171% and 262% of their initial values, respectively. Such results indicate that the lowered redox potential of the pyridine nucleotide pool existing when glucono-δ-lactone is oxidized promotesin vivo inactivation of glutathione reductase.  相似文献   

12.
Nicotinamide adenine dinucleotide (NAD+/NADH) along with its phosphorylated form (NADP+/NADPH) are two molecules ubiquitously present in all organisms, and they play key roles as cofactors in fundamental catabolic and anabolic processes, respectively. The oxidation of NADPH to NADP+ initiates a cascade of reactions, where a network of molecules is implicated. The molecules of this cascade form a network with eminent translational potential in redox metabolism. A special point of interest is that spectrophotometric assays have been developed both for NADH/NADPH and the molecules directly regulated by them. Therefore, crucial molecules of the NADPH-dependent redox network can be measured, and the results can be used to assess the bioenergetic and/or oxidative stress status. The main aim of this review is to collectively present the NADPH-related molecules, namely NADPH, NADH, NAD+ kinase, NADPH oxidase, peroxiredoxin, thioredoxin, thioredoxin reductase, and nitric oxide synthase, that can be measured in blood and tissues with the use of a spectrophotometer, which is probably the most simple, inexpensive and widely used tool in biochemistry. We are providing the researchers with reliable and valid spectrophotometric assays for the measurement of the most important biomarkers of the NADPH network in blood and other tissues, thus allowing the opportunity to follow the redox changes in response to a stimulus.  相似文献   

13.
In photosynthetic organisms, ferredoxin:NADP+ oxidoreductase (FNR) is known to provide NADPH for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNRS) similar to the one found in plant plastids and a large one (FNRL) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNRL exhibits a higher NADP+/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNRL, named FNRL-PC. The enzymatic activities of FNRL-PC were compared with those of FNRS. During NADPH oxidation, FNRL-PC exhibits a 30% decrease in the Michaelis constant Km(NADPH), and a 70% increase in Km(ferredoxin), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP+ reduction, the FNRL-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP+. The increase in Km(ferredoxin) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNRL-PC. Both isoforms are capable of catalyzing the NADP+ reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo.  相似文献   

14.
Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers at 25°C, with a photon flux density of 500 mol m-2s-1. Measurements were made of net CO2 exchange, leaf adenylates (ATP, ADP and AMP), and leaf nicotinamide nucleotides (NAD+, NADP+, NADH, NADPH), over the diurnal period (16h light/8 h dark) and during photosynthetic induction. All the measurements were carried out on recently expanded leaves from 5-week-old plants. When the lights were switched on in the growth chamber, the rate of photosynthetic CO2 uptake, and the levels of leaf ATP and NADPH increased to a maximum in 30 min and remained there throughout the light period. The increase in ATP over the first few minutes of illumination was associated with the phosphorylation of ADP to ATP and the increase in NADPH with the reduction of NADP+; subsequently, the increase in ATP was associated with an increase in total adenylates while the increase in NADPH was associated with an accumulation of NADP+ and NADPH due to the light-driven phosphorylation of NAD+ to NADP+. On return to darkness, ATP and NADPH values decreased much more slowly, requiring 2 to 4 hours to reach minimum values. From these results we suggest that (i) the total adenylate and NADPH and NADP+ (but not NAD+ and NADH) pools increase following exposure to light; (ii) the increase in pool size is not accompanied by any large change in the energy or redox states of the system; and (iii) the measured ratios of ATP/ADP and NADPH/NADP+ for intact leaves are low and constant during steady-state illumination.Abbreviations AEC adenylate energy charge - DHAP dihydroxyacetone phosphate - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide - PES phenazine ethosulfate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - PFD photon flux density - Ru5P ribulose-5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

15.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

16.
The NAD+‐dependent lactate dehydrogenase from Bacillus subtilis (BsLDH) catalyzes the enantioselective reduction of pyruvate to lactate. BsLDH is highly specific to NAD+ and exhibits only a low activity with NADP+ as cofactor. Based on the high activity and good stability of LDHs, these enzymes have been frequently used for the regeneration of NAD+. While an application in the regeneration of NADP+ is not sufficient due to the cofactor preference of the BsLDH. In addition, NADP+‐dependent LDHs have not yet been found in nature. Therefore, a structure‐based approach was performed to predict amino acids involved in the cofactor specificity. Methods of site‐saturation mutagenesis were applied to vary these amino acids, with the aim to alter the cofactor specificity of the BsLDH. Five constructed libraries were screened for improved NADP+ acceptance. The mutant V39R was identified to have increased activity with NADP+ relative to the wild type. V39R was purified and biochemically characterized. V39R showed excellent kinetic properties with NADP(H) and NAD(H), for instance the maximal specific activity with NADPH was enhanced 100‐fold to 90.8 U/mg. Furthermore, a 249‐fold increased catalytic efficiency was observed. Surprisingly, the activity with NADH was also significantly improved. Overall, we were able to successfully apply V39R in the regeneration of NADP+ in an enzyme‐coupled approach combined with the NADP+‐dependent alcohol dehydrogenase from Lactobacillus kefir. We demonstrate for the first time an application of an LDH in the regeneration of NADP+.  相似文献   

17.
Thioredoxins (TRXs) mediate light‐dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox‐regulated enzymes. Of the two plastid TRX systems, the ferredoxin‐TRX system consists of ferredoxin‐thioredoxin reductase (FTR) and multiple TRXs, while the NADPH‐dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd‐TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non‐photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX‐regulated enzymes in Calvin–Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose‐1,6‐bisphosphatase, phosphoribulokinase and CF1γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC‐mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin‐TRX system and is crucial when availability of light is limiting photosynthesis.  相似文献   

18.
Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H2O to NADP+. Final electron transfer from ferredoxin to NADP+ is accomplished by a flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). Here we describe TROL (t hylakoid r ho danese‐l ike protein), a nuclear‐encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese‐like domain and a C‐terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high‐light intensities are severely lowered accompanied with significant increase in non‐photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP+. Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.  相似文献   

19.
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ‐subunit through the ferredoxin–thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild‐type levels as irradiance was increased. This effect was caused by an altered redox state of the γ‐subunit under low, but not high, light. The low light‐specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non‐photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin–thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.  相似文献   

20.
This study provides evidence for enhanced electron flow from the stromal compartment of the photosynthetic membranes to P700+ via the cytochrome b6/f complex (Cyt b6/f) in leaves of Cucumis sativus L. submitted to chilling-induced photoinhibition. The above is deduced from the P700 oxidation–reduction kinetics studied in the absence of linear electron transport from water to NADP+, cyclic electron transfer mediated through the Q-cycle of Cyt b6/f and charge recombination in photosystem I (PSI). The segregation of these pathways for P700+ rereduction were achieved by the use of a 50-ms multiple turnover white flash or a strong pulse of white or far-red illumination together with inhibitors. In cucumber leaves, chilling-induced photoinhibition resulted in ∼20% loss of photo-oxidizible P700. The measurement of P700+ was greatly limited by the turnover of cyclic processes in the absence of the linear mode of electron transport as electrons were rapidly transferred to the smaller pool of P700+. The above is explained by integrating the recent model of the cyclic electron flow in C3 plants based on the Cyt b6/f structural data [Joliot and Joliot (2006) Biochim Biophys Acta 1757:362–368] and a photoprotective function elicited by a low NADP+/NAD(P)H ratio [Rajagopal et al. (2003) Biochemistry 42:11839–11845]. Over-reduction of the photosynthetic apparatus results in the accumulation of NAD(P)H in vivo to prevent NADP+-induced reversible conformational changes in PSI and its extensive damage. As the ferredoxin:NADP reductase is fully reduced under these conditions, even in the absence of PSII electron transport, the reduced ferredoxin generated during illumination binds at the stromal openings in the Cyt b6/f complex and activates cyclic electron flow. On the other hand, the excess electrons from the NAD(P)H pool are routed via the Ndh complex in a slow process to maintain moderate reduction of the plastoquinone pool and redox poise required for the operation of ferredoxin:plastoquinone reductase mediated cyclic flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号