首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all the nuclear‐encoded subunits of the A, B, membrane and ferredoxin‐binding sub‐complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH–PSI super‐complex formation. It is also unlikely that the subunits of the lumen sub‐complex, PnsL1–L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue‐native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH–PSI super‐complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild‐type genome copies were completely segregated out, the ΔndhB lines grew like the wild‐type photoautotrophically. A post‐illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A‐insensitive, and ferredoxin‐dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.  相似文献   

12.
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号