首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dipeptidyl aminopeptidase (a membrane-bound enzyme) which cleaved Met-enkephalin and released dipeptide (Tyr-Gly) was partially purified from monkey brain. A fraction containing both exoaminopeptidase and dipeptidyl aminopeptidase activity was obtained from DE-52 cellulose column chromatography. The dipeptidyl aminopeptidase activity in this fraction was not inhibited by addition of bestatin (300 μg/ml), while the exoaminopeptidase was strongly inhibited. Both enzymes were separated by AH-Sepharose 4B column chromatography. The molecular weight of the dipeptidyl aminopeptidase was calculated about 110,000. The enzyme activity was inhibited by addition of diisopropylfluorophosphate (DFP) or o-phenanthroline.  相似文献   

2.
Purification and properties of rat brain dipeptidyl aminopeptidase   总被引:2,自引:0,他引:2  
Dipeptidyl aminopeptidase, which hydrolyzes the 7-(Gly-Pro)-4-methylcoumarinamide, has been purified from the brains of 3 week-old rats. It was purified about 2,600-fold by column chromatography on CM-cellulose, hydroxyapatite and Gly-Pro AH-Sepharose. This enzyme hydrolyzed Lys-Ala-beta-naphthylamide well with an optimum pH of 5.5. It was inhibited by diisopropyl fluorophosphate, phenyl-methanesulfonyl fluoride, some cations, and puromycin, but was not inhibited by p-chloromercuribenzoate, N-ethylmaleimide, dithiothreitol, EDTA, iodoacetic acid, and bacitracin, indicating that rat brain dipeptidyl aminopeptidase is a serine protease. This enzyme showed a molecular weight of 220,000 by gel filtration and of 51,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The properties of purified rat brain dipeptidyl aminopeptidase were similar to those of bovine pituitary dipeptidyl peptidase II, but the molecular weight and substrate specificity of these enzymes were different.  相似文献   

3.
K S Hui  Y J Wang  A Lajtha 《Biochemistry》1983,22(5):1062-1067
A membrane-bound aminopeptidase was purified from rat brain, and its activity was assayed by high-pressure liquid chromatography with Met-enkephalin as the substrate. The enzyme was extracted with 1% Triton X-100 and purified by chromatography, successively on DEAE-Sepharose CL-6B, Bio-Gel HTP, and Sephadex G-200 columns. The overall purification was about 1200-fold, with 25% yield. The purified enzyme showed one band on disc gel electrophoresis and two bands on sodium dodecyl sulfate electrophoresis with molecular weights of 62 000 and 66 000. The aminopeptidase has a pH optimum of 7.0, a Km of 0.28 mM, and a Vmax of 45 mumol (mg of protein)-1 min-1 for Met-enkephalin. It releases tyrosine from Met-enkephalin, but it does not split the byproduct. It does not hydrolyze gamma- or beta-endorphin, or dynorphin, but it does hydrolyze neutral and basic aminoacyl beta-naphthylamides. The enzyme is inhibited by the aminopeptidase inhibitors amastatin, bestatin, and bestatin-Gly. Its properties, such as its subcellular localization, substrate specificity, pH optimum, and molecular weight, distinguish it from leucine aminopeptidase, aminopeptidase A, aminopeptidase B, aminopeptidase M, and the soluble aminopeptidase for enkephalin degradation.  相似文献   

4.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

5.
An aminopeptidase fromStreptococcus sanguis NCTC 10904 was isolated, purified, and characterized. The enzyme was produced constitutively and could be isolated from the cytoplasmic fraction of lysed cells. Its substrate profile indicated that it is primarily a leucyl aminopeptidase, but with a substrate spectrum including lysyl- and arginyl-peptides. The subunit molecular weight of the enzyme was approximately 74,000, but an octomeric form also was prominent, as indicated by gel filtration separations of active enzymes. The optimal temperature for activity was 32°C, and the optimal pH value was about 7.0. The enzyme showed cooperative kinetics and was activated by Co2+. The regulation of synthesis and the characteristics of the enzyme suggest that it may serve a regulatory function rather than just a nutritional function.  相似文献   

6.
Homogenious leucine aminopeptidase is purified from "oryzine"--mixture of enzymes produced by surface culture of Asperigillus oryzae using treatment with activated characoal, followed by DEAE-cellulose and hydroxylapatite chromatographies, Biogel P-100 gel-filtration and polyacrylamide-gel electrophoresis. The enzyme has pH optimum 9.0 and the molecular weight 37500 as estimated by gil-filtration through Sephadex G-100 (superfine) and SDS-polyacrylamide gel electrophoresis. Leucine aminopeptidase from Asp. oryzae has a broad substrate specificity, therefore, cleaving with the highest rate the peptides carrying N-terminal leucine. The enzyme is completely inhibited with EDTA and beta-mercaptoethanol, and it is a metalloenzyme.  相似文献   

7.
An intracellular arginine--specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of -50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-beta-naphthylamide as a substrate was at 37 degrees C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to AmpS of Bacillus cereus and AP II of B. thuringensis.  相似文献   

8.
O Kurauchi  S Mizutani  K Okano  O Narita  Y Tomoda 《Enzyme》1986,35(4):197-205
Human placental microsomal aminopeptidase (microsomal PAP) was purified 3,880-fold from human placenta and characterized. The enzyme was solubilized from membrane fractions with Triton X-100 and also trypsin digestion, and subjected to zinc sulfate fractionation, chromatographies with DE-52, hydroxylapatite, Sephacryl S-300 and lentil lectin-Sepharose 4B, and finally affinity chromatography with bestatin-Sepharose 4B. Microsomal PAP was separated from aminopeptidase A (AAP) by affinity chromatography. The apparent relative molecular mass (Mr) of the enzyme was estimated to be 220,000 by high-performance liquid chromatography with an aqueous gel column. The purified enzyme gave almost a single band with a molecular mass of 140,000 by sodium dodecyl sulfate (SDS) gel electrophoresis. The isoelectric point of the enzyme was 5.2. The purified enzyme was most active at pH 8.0 with L-leucine-p-nitroanilide as substrate; the Km value for this substrate was 1.1 mmol/l. The microsomal PAP was immunologically different from the pregnancy serum cystyl aminopeptidase (serum PAP).  相似文献   

9.
Solubilization of particulate aminopeptidase (EC 3.4.11.2) from pig kidney with Triton X-100 yields an aggregate (mol. wt. approx. 10(6)) that decomposes into "free" aminopeptidase (mol. wt. 280 000) either upon autolysis at pH 5 or after exposure to trypsin. Both procedures yield free enzymes that are identical with respect to electrophoretic mobility, enzymatic activity and zinc content. After dissociation, the enzyme resulting from autolysis yields a single subunit of 140 000 molecular weight while the trypsin-treated enzyme produces three fragments (140 000, 95 000 and 48 000 mol. wt.). As the aggregate is formed by subunits 10 000 daltons heavier than those of the free enzyme, the existence of a hydrophobic portion anchoring the enzyme to the membrane might be postulated. Reactivation experiments carried out on the three purified fragments of urea-denatured aminopeptidase show that the 140 000 molecular weight subunit is the only one able to yield an active enzyme (after spontaneous dimerization). It can be concluded that the smaller fragments are artefacts resulting from trypsin degradation during purification.  相似文献   

10.
S M Sebti  J S Lazo 《Biochemistry》1987,26(2):432-437
Bleomycin (BLM) hydrolase inactivates the BLM class of antitumor antibiotics and protects against BLM-induced pulmonary fibrosis. This enzyme is poorly characterized but believed to be an aminopeptidase B. In the present report, both BLM hydrolase and aminopeptidase B from rabbit pulmonary cytosol were retained by arginyl-Sepharose and BLM-Sepharose affinity columns, further suggesting that these two enzymes are similar. When, however, BLM hydrolase was purified over 1800-fold by using our newly developed high-speed liquid chromatography assay for BLM hydrolase coupled with fast protein liquid chromatography, we found that this partially purified BLM hydrolase preparation lacked aminopeptidase B activity. Furthermore, BLM hydrolase was completely separated, by using anion-exchange Mono Q chromatography, from all the aminopeptidases identified in rabbit pulmonary cytosol: one aminopeptidase B, two aminopeptidases N, and one aminopeptidase with both aminopeptidase B and aminopeptidase N activities. Pulmonary BLM hydrolase also had a higher molecular weight than pulmonary aminopeptidase B. In contrast to aminopeptidase B, BLM hydrolase was not activated by NaCl and was much less stable at 4 degrees C. In addition, bestatin was a potent inhibitor of aminopeptidase B but had little effect on BLM hydrolase, while leupeptin was a potent inhibitor of BLM hydrolase but was less effective against aminopeptidase B. Thus, pulmonary BLM hydrolase and aminopeptidase B have affinity for each other's substrate, but they are clearly distinct enzymes on the basis of charge characteristics, molecular weight, stability, and sensitivity to inhibitors and activators.  相似文献   

11.
Based on the liberation of proline from ProLeuGlyNH2 (MIF-1, melanostatin) manganese-activated prolyl aminopeptidase activities were purified from rat brain and kidney cytosolic fractions. They were distinguished from other di- and tripeptidases and an arylamidase liberating N-terminal proline. Purified prolyl aminopeptidase from both sources had identical molecular properties (native Mr 300,000, subunit Mr 54,000) and very similar catalytic properties. The action of the purified enzymes was not restricted to proline. Other, in particular lipophilic, amino acids were cleaved from di-, tri- and oligopeptides with even higher velocities. Peptides with N-terminal penultimate proline residues were not degraded. From a comparison of molecular data, action on peptides, influence of pH values, inhibitors and activators, it is concluded that the activity is identical with leucyl aminopeptidase (EC 3.4.11.1) and that a separate prolyl aminopeptidase (EC 3.4.11.5) does not exist in rats.  相似文献   

12.
The regional, cellular and subcellular distribution patterns of aminopeptidase N and dipeptidyl aminopeptidase IV were examined in rat small intestine. Aminopeptidase N of brush border membrane had maximal activity in the upper and middle intestine, while dipeptidyl aminopeptidase IV had a more uniform distribution profile with relatively high activity in the ileum. Along the villus and crypt cell gradient, the activity of both enzymes was maximally expressed in the mid-villus cells. However there was substantial dipeptidyl aminopeptidase IV activity in the crypt cells. Both enzymes were primarily associated with brush border membranes in all segments, however, in the proximal intestine, a significant amount of dipeptidyl aminopeptidase IV activity was associated with the cytosol fraction. The cytosol and brush border membrane forms of dipeptidyl aminopeptidase IV were immunologically identical and had the same electrophoretic mobility on disc gels. In contrast, the soluble and brush border membrane-bound forms of aminopeptidase N were immunologically distinct. When the total amount of aminopeptidase N and dipeptidyl aminopeptidase IV was determined by competitive radioimmunoassay, there were no regional or cellular differences in specific activity (enzyme activity/mg of enzyme protein) of either enzyme in brush border membrane and homogenate. The specific activity of both enzymes in a purified Golgi membrane fraction as measured by radioimmunoassay was about half that of the brush border membrane fraction. These results suggest that (1) aminopeptidase N and dipeptidyl aminopeptidase IV have different regional, cellular and subcellular distribution patterns; (2) there are enzymatically inactive forms of both enzymes present in a constant proportion to active molecules and that (3) a two-fold activation of precursor enzyme forms occurs during transfer from the Golgi membranes to the brush border membranes.  相似文献   

13.
An aminopeptidase was purified about 4,000-fold from the clarified homogenate of bovine leukocytes by a series of column chromatographies on DEAE-cellulose, hydroxyapatite, Sephadex G-150, and DEAE-Toyopearl. The purified enzyme had a specific activity of 3.8 mumol X min-1 X mg-1 with arginine beta-naphthylamide (Arg-2-NNap) as substrate, and a minute amount of contaminating protein was found to be present by gel electrophoresis. The molecular weight of the enzyme was estimated to be 94,000 by gel filtration on Sephadex G-150. The enzyme had a broad substrate specificity and a pH optimum between 6.5 and 7.0 for the hydrolysis of alpha-aminoacyl beta-naphthylamides. It hydrolyzed beta-naphthylamides of basic, aliphatic, and aromatic amino acids, and also catalyzed the liberation of amino-terminal phenylalanine from phenylalanyl peptides. The enzyme was inhibited by bestatin, puromycin, 1,10-phenanthroline, sulfhydryl reagents, and a variety of heavy metal ions. Only the cobaltous ion stimulated the enzyme and the values of both Km and Vmax for Arg-2-NNap increased. In gross properties the present enzyme resembles porcine liver aminopeptidase reported previously (Kawata, S., et al. (1982) J. Biochem. 92, 1093-1101) very closely.  相似文献   

14.
Aminopeptidase B (EC 3.4.11.6; L-arginyl-beta-naphthylamidase) was purified 1,800-fold from human placental cytoplasm and characterized. The enzyme was subjected to ammonium sulfate fractionation and a series of chromatographies on DE-52, hydroxylapatite, Bio-gel A 0.5 m and L-arginine-Sepharose. The native molecular mass of the enzyme was estimated to be 220,000 by gel filtration. The molecular mass was estimated to be about 83,000 by SDS/PAGE in the absence of 2-mercaptoethanol, suggesting that the enzyme exists in a polymeric form. The isoelectric point of the enzyme was 5.4. The purified enzyme was most active at pH 7.2 with L-arginyl-beta-naphthylamide as substrate and the Km value for this enzyme was 0.3 mmol/l. Human placental aminopeptidase B was markedly activity by Cl-. Bestatin and arphamenin, low molecular weight peptides, showed appreciable inhibition of this enzyme. However, amastatin and puromycin did not inhibit the enzyme. Bacitracin markedly activated this enzyme.  相似文献   

15.
Microvillus aminopeptidase (EC 3.4.11.2) is an enzyme with a molecular weight around 300 000. Normal preparations contain three different subunits (subunit A, Mr 162 000; subunit B, Mr 123 000; subunit C, Mr 61 000). The relationship between the three subunits was studied by immunoelectrophoresis using specific antibodies against individual denatured subunits and by densitometric scanning of polyacrylamide gels after separation of the three subunits. The results suggest that microvillus aminopeptidase initially appears in the membrane as a symmetric molecule built up to two identical A subunits. These subunits are then split into equimolar amounts of subunit B and subunit C by trypsin. Subunit B cannot generate subunit C but may be further degraded. The reaction sequence described is one which occurs in vivo. Treatment of purified aminopeptidase with trypsin increases the specific activity twofold. This phenomenon does not seem to be correlated to the generation of subunit B and subunit C or to the transformation of amphiphilic form into hydrophilic form.  相似文献   

16.
A novel aminopeptidase from Clostridium histolyticum   总被引:1,自引:0,他引:1  
An aminopeptidase was found in the culture filtrate of Cl. histolyticum and purified to homogeneity (130 times) in a two-step procedure. All types of N-terminal amino acids, including proline and hydroxyproline are cleaved by the enzyme from small peptides and from polypeptides. A low rate of hydrolysis was observed for β-naphthylamides and for alanine amide; p-nitroanilides were not hydrolyzed. Kinetic parameters (Km and Vmax) for several tripeptides and the tetrapeptide Pro-Gly-Pro-Pro were determined. The enzyme has a pH optimum at 8.6. The presence of either Mn++ or Co++ is essential for its activity. Only slight activation was observed with Ni++ and Cd++, while Zn++ and Cu++ were inhibitory. The molecular weight of the native enzyme is about 340,000, and a molecular weight of about 60,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate (SDS).The culture filtrate of Cl. histolyticum has been shown to contain various proteolytic enzymes, in addition to collagenase1–5. In a search for enzymes acting on proline-rich peptides, we tested the crude filtrate with (Pro-Gly-Pro)n, (Pro-Gly-Pro)n-OMe, α,DNP-(Pro-Gly-Pro)n and poly-L-proline as substrates. Proline was formed only from (Pro-Gly-Pro)n and its methyl ester. This showed the presence in Cl. histolyticum filtrate of an aminopeptidase which cleaves N-terminal proline from polypeptides but not from polyproline. The purification and some of the properties of this clostridial aminopeptidase (CAP) are described in this communication.  相似文献   

17.
An aminopeptidase (alpha-aminoacyl L-peptide hydrolase, EC 3.4.11.1) was purified to homogeneity from autolysates of brewer's yeast. The enzyme which is responsible for most of the yeast cell's aminopeptidase activity is a glycoprotein containing about 12% of conjugated carbohydrate and 0.02% Zn2+ and having a complex quaternary structure. The active species has a molecular weight of approx. 600000 and an isoelectric point of 4.7. The enzyme is remarkably stable, even in dilute solutions. All types of L-amino acid and peptide derivatives containing a free amino terminus are attacked, including amino acid amides and esters. As to its substrate specificity, the enzyme belongs to the so called leucine-aminopeptidases. It is strongly and specifically activated by Zn2+ and Cl- (or Br-) and inactivated by metal-chelating agents. The activation by Zn2+ seems to be mediated by a conformational transition which affects exclusively V and leads to a form of the enzyme which enhanced stability against heat. Halide anions, on the other hand, are acting as positive allosteric effectors, modulating both V and Km.  相似文献   

18.
Dipeptidyl aminopeptidase IV, a glycoprotein from pig kidney   总被引:3,自引:0,他引:3  
Dipeptidyl aminopeptidase IV was purified 350 fold from pig kidney by chromatographic procedures including affinity chromatography with conjugates of Gly-Pro linked to Sepharose 4.B. Purified enzyme existed in a dimeric form as determined by sodium dodecyl sulfate polyacrylamide-gel electrophoresis using dimethyl suberimidate (a cross-linking reagent). The molecular weight of the subunit was estimated to be 100 000 by gel filtration with 6 M guanidine hydrochloride and to be 94 000 based on analysis of N-terminal residue (dinitrophenyl-serine). The amino acid composition of the purified enzyme was also determined. The enzyme contained 18.3% of carbohydrate consisting of mannose, galactose, fucose, glucosamine and sialic acid. The enzyme desialized with sialidase was found to still possess full enzyme activity.  相似文献   

19.
An aminopeptidase (HSA) with a molecular mass of 78 kDa was purified from hemp (Cannabis sativa) seeds. The activity was inhibited by monoiodeacetic acid, p-chloromercuri-phenylsulfonic acid, and Zn2+ ion. The specificity of HSA was similar to that of a leucyl aminopeptidase [EC 3.4.11.1] from mammalian cytosol. However, other enzyme properties were different from these of leucyl aminopeptidase.  相似文献   

20.
An intracellular aminopeptidase (EC 3.4.11.-) was purified from the extreme thermophilic archaebacterium, Sulfolobus solfataricus. The molecular weight of the native enzyme was about 320,000, as calculated by gel-filtration studies, and a subunit Mr of 80,000 was estimated by SDS-polyacrylamide gel electrophoresis. The temperature optimum of the enzyme was at 75 degrees C and the pH optimum was found to be 6.5. The aminopeptidase was highly active against the chromogenic substrates L-Leu-p-NA and L-Ala-p-NA. The enzyme was inhibited by EDTA, but the activity could be partially restored by removal of the EDTA and incubation with Co2+ or Mn2+. Bestatin, a typical inhibitor of aminopeptidase, fully inhibited the enzyme activity, but inhibitors of serine proteinases had no effect. Beside a high thermostability, the enzyme showed a remarkable stability against 6 M urea, organic solvents and acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号