首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Allophycocyanin (APC) has a broad absorption spectrum permitting several different lasers to be used to excite this dye in a flow cytometer. A comparison was made between a dye laser and a helium-neon (HeNe) laser for the excitation of APC as an immunofluorescent chromophore. The ratio of fluorescence of stained to unstained lymphocytes (signal to background) was used to assess differences in sensitivity. In determining the best wavelength for operating the dye laser, it was found that there was little difference in the ability to separate the positive-labelled cells from the unstained cells using 600 nm or 633 nm light for excitation of APC. A study of the effect of laser power on the signal to background identified a nonlinear relationship. It was found that the sensitivity obtained with 47 mW of 633 nm light from a HeNe laser was near the maximum attainable. This sensitivity was comparable to that obtained using phycoerythrin as an immunofluorescence chromophore. APC had the added advantage of being applicable to the study of highly autofluorescent cells. Exciting this chromophore using red light dramatically decreased the autofluorescence observed even on alveolar macrophages.  相似文献   

2.
OBJECTIVE: We evaluated the use of a high power, diode pulsed solid-state laser emitting 532 nm light for immunofluorescence applications. We compared the sensitivity and utility of this laser with the standard 488 nm excitation. METHODS: A flow cytometer was equipped with both a 488 nm and a 532 nm laser; fluorescence emissions from each laser were collected using the same filters and the same detector system. Cells or compensation beads (e.g. latex beads coated with anti-kappa antibodies) were stained with monoclonal antibodies conjugated to phycoerythrin (PE) as well as the PE tandem dyes TRPE, Cy5PE, Cy5.5PE, and Cy7PE. The sensitivity of detection of these reagents as well as those in heavily compensated channels was quantified by measuring the spreading error for a primary detector into a secondary detector. RESULTS: Measurement of the fluorescence emission of PE and PE-tandem dyes was considerably more sensitive when using 532 nm excitation (150 mW) as compared with 488 nm excitation (20 mW). In addition, as the absolute number of photoelectrons collected was greater, there was less measurement-error-induced spread into the compensated channels. As an example, when comparing the spreading error of PE labeled cells into the TRPE detector, the green laser was found to be 15-fold more sensitive as compared with the blue laser. In addition, the blue laser produced more autofluoresent signal from cells as compared with the green laser. Together, these advantages of the 532 nm excitation line provides for a significantly improved detection of immunofluorescence staining.  相似文献   

3.
INTRODUCTION: In previous studies we and others have demonstrated the usefulness of violet laser diodes (VLDs) as replacement laser sources for krypton-ion lasers on stream-in-air cytometers. Previously available VLDs had a maximum available power of less than 25 mW; this was sufficient for excitation of densely labeled cell surface antigens using fluorochromes such as Cascade Blue or Pacific Blue, but may have been insufficient for applications requiring higher levels of photon saturation, such as low-level expression of Cyan Fluorescent Protein (ECFP) in CFP-YFP FRET applications. In this follow-up study, we have tested more powerful VLDs emitting at 55 mW, and a beam-merged dual module VLD with 100 mW combined output, for their ability to excite a variety of violet-excited fluorochromes, including CFP. METHODS: A dual module VLD (two linear polarized VLDs with their beams merged by a polarized beam combiner) emitting at 404 nm was mounted on a BD FACSVantage DiVa stream-in-air cytometer. The individual polarized 55 mW beams or the 100 mW combined beams were used to analyze PBMCs labeled with the violet-excited probes Cascade Blue, Alexa Fluor 405, Cascade Yellow and Pacific Orange dyes. Violet-excited fluorescent microsphere mixtures with decreasing fluorescence levels were also used to detect the minimum sensitivity threshold and precision of these lasers. VLD excitation on a gel-coupled cuvette flow cytometer was used as a sensitivity baseline. RESULTS: The dual module 100 mW VLD gave both sensitivity and precision levels approaching that observed for lower-power sources on a cuvette cytometer. Single polarized VLD modules at 55 mW gave slightly decreased sensitivity for the microspheres standards and all the tested fluorochromes compared to the 100 mW source. CONCLUSIONS: While 55 mW laser sources performed adequately in the stream-in-air format, increasing the power to 100 mW did give a small but detectable increase in instrument sensitivity. This sensitivity level approached that of cuvette systems.  相似文献   

4.
R D Bigler 《Cytometry》1987,8(5):441-444
The feasibility of installing a low power ultraviolet (UV) laser in a commercial flow cytometer was evaluated by testing an Ortho Cytofluorograf 50HH and a Coulter Epics V. Both instruments were equipped with two argon ion lasers, one emitting at 488 nm and the other in the UV region and were tested by measuring the DNA content of cells stained with Hoechst 33342 or DAPI. The coefficient of variation (CV) of the G0/G1 peak of the DNA histograms produced by each instrument did not deteriorate markedly when results obtained at 100-125 mW were compared to those obtained at 10 mW. These tests indicated that a helium-cadmium laser (He-Cd) which can produce 10 mW at 325 nm should work well as a UV laser in these instruments. An Ortho Cytofluorograf IIs was purchased with a 10 mW He-Cd laser installed in the forward position. Studies of DNA content have confirmed that this low power UV laser can produce CVs of 2.2% with DAPI stained fixed cells and 3.6% with Hoechst 33342 stained viable lymphocytes. Thus, the He-Cd laser should provide a reasonable alternative as a UV source for flow cytometers.  相似文献   

5.
Flow cytometers typically incorporate expensive lasers with high-quality (TEM00) output beam structure and very stable output power, significantly increasing system cost and power requirements. Red diode lasers minimize power consumption and cost, but limit fluorophore selection. Low-cost DPSS laser pointer modules could possibly offer increased wavelength selection but presumed emission instability has limited their use. A $160 DPSS 532 nm laser pointer module was first evaluated for noise characteristics and then used as the excitation light source in a custom-built flow cytometer for the analysis of fluorescent calibration and alignment microspheres. Eight of ten modules tested were very quiet (RMS noise < or = 0.6% between 0 and 5 MHz). With a quiet laser pointer module as the light source in a slow-flow system, fluorescence measurements from alignment microspheres produced CVs of about 3.3%. Furthermore, the use of extended transit times and < or =1 mW of laser power produced both baseline resolution of all 8 peaks in a set of Rainbow microspheres, and a detection limit of <20 phycoerythrin molecules per particle. Data collected with the transit time reduced to 25 micros (in the same instrument but at 2.4 mW laser output) demonstrated a detection limit of approximately 75 phycoerythrin molecules and CVs of about 2.7%. The performance, cost, size, and power consumption of the tested laser pointer module suggests that it may be suitable for use in conventional flow cytometry, particularly if it were coupled with cytometers that support extended transit times.  相似文献   

6.
An improved dual-laser flow cytometric system for quantitative analysis and sorting of mammalian cells has been developed using a low-power argon and high-power krypton laser as illumination sources, thus permitting the excitation of fluorescent dyes having absorption regions ranging from the ultraviolet to infrared. Cells stained in liquid suspension with fluorescent dyes enter a flow chamber where they intersect two spatially separated laser beams. Separate pairs of quartz beam-shaping optics focus each beam onto the cell stream. Electro-optical sensors measure fluorescence and light scatter signals from cells that are processed electronically and displayed as frequency distribution histograms. Cells also can be electronically separated and microscopically identified. The ease and versatility of operation designed into this system represent a marked technological improvement for dual-laser excited flow systems. Details of this instrument are described along with illustrative examples of cells stained with mithramycin and rhodamine and analyzed for DNA content, total protein, and nuclear and cytoplasmic diameter.  相似文献   

7.
BACKGROUND: The linking of intracellular metabolism of anticancer drugs with cellular response is problematic. We describe a new probe for cellular integrity, based upon a structure which has the additional potential to act as a substrate for cytochrome P450-dependent bioreductive metabolism. DRAQ5NO is an N-oxide modified anthraquinone with optimal fluorescence excitation maxima compatible with He-Ne (633 nm) and Kr-Ar (647 nm) lasers. METHODS: DRAQ5NO-loading and Annexin V binding was monitored using dual-laser flow cytometry (488 nm/633 nm wavelengths) in human lymphoma cultures undergoing anticancer drug- (etoposide; VP-16) induced apoptosis. RESULTS: DRAQ5NO gave an Em(lambdamax) of 700.5 nm but retains DNA binding potential with an emission wavelength red-shift of approximately 12 nm. The agent showed reduced cytotoxicity and a limited capacity to accumulate within cells compared with the non-N-oxide form that shows a high nuclear targeting capacity in intact cells. DRAQ5NO/Annexin V provides for a positive discrimination between intact cells, membrane-compromised cells, cellular debris, and early stage apoptotic cells. CONCLUSIONS: The spectral properties of DRAQ5NO allow for the use of visible range fluorochromes and differential excitation in multilaser systems for tracking apoptotic populations with implications for the measurement of bioreductive potential in complex tumour populations simultaneously undergoing physiologically or drug-induced apoptosis.  相似文献   

8.
BACKGROUND: Violet laser diodes have recently become commercially available. These devices emit 5-25 mW in the range of 395-415 nm, and are available in systems that incorporate the diodes with collimating optics and regulated power supplies in housing incorporating thermoelectric coolers, which are necessary to maintain stable output. Such systems now cost several thousand dollars, but are expected to drop substantially in price. Materials and Methods A 4-mW, 397-nm violet diode system was used in a laboratory-built flow cytometer to excite fluorescence of DAPI and Hoechst dyes in permeabilized and intact cells. Forward and orthogonal light scattering were also measured. RESULTS: DNA content histograms with good precision (G(0)/G(1) coefficient of variation 1.7%) were obtained with DAPI staining; precision was lower using Hoechst 33342. Hoechst 34580, with an excitation maximum nearer 400 nm, yielded the highest fluorescence intensity, but appeared to decompose after a short time in solution. Scatter signals exhibited relatively broad distributions. CONCLUSIONS: Violet laser diodes are relatively inexpensive, compact, efficient, and quiet light sources for DNA fluorescence measurement using DAPI and Hoechst dyes; they can also excite several other fluorescent probes.  相似文献   

9.
By use of a flow cytometer, the fluorescence of cells stained with hematoporphyrin derivative and the fluorescence of plastic beads stained with different dyes were analysed as a function of the intensity of the exciting laser light. The ratios of the fluorescence values of stained and unstained cells as well as of stained cells and beads were sensitively dependent on excitation intensities. As a consequence of this finding, the normalization of cellular fluorescence by use of reference particles needs to be made on a well-defined and reproduced intensity of the exciting laser light.  相似文献   

10.
H M Shapiro  S Stephens 《Cytometry》1986,7(1):107-110
The laser dyes oxazine 750 (OX750), LD700, and rhodamine 800 (R800) can be used in an instrument employing a low-power helium-neon laser source for flow cytometry of DNA content in ethanol-fixed or detergent-permeabilized cells. Cells in near-isotonic medium are stained with 10-30 microM dye, and fluorescence excited at 633 nm is measured at wavelengths above 665 nm. The dyes do not appear to stain RNA, and the intensity of DNA staining is not changed when 2 microM Hoechst 33342 is added to cells simultaneously with a red-excited dye. The effects on fluorescence of addition of DNA to LD700 or R800 in aqueous solution are strongly influenced by the base composition of the DNA; binding mechanisms remain to be determined.  相似文献   

11.
DNA damage was measured by flow cytometric analysis of cells sensitive and resistant to alkylating agents. Human ovarian carcinoma cell line A2780 and a subline which is 7 times more resistant to L-phenylalanine mustard (L-PAM) were treated with the drug, fixed, and stained with monoclonal antibody (MOAB) F7-26 which detects single-stranded regions in alkylated DNA. Mean fluorescent intensity was measured on a flow cytometer. Cells were heated before staining to amplify single-strandedness in alkylated DNA. Significantly larger amount of MOAB was bound to DNA in sensitive than in resistant cells. Fluorescence increased by 80 channels per micrograms L-PAM insensitive cells and only by 17 channels in resistant cells. Sensitive and resistant cells were treated with L-PAM, mixed in different proportions, and stained with MOAB. Populations of sensitive and resistant cells were clearly separated on fluorescence histograms by more than a decade difference in fluorescence intensity. Presence of 2-5% resistant cells was detected among sensitive cells as a separate cell subset. We conclude that staining with MOAB F7-26 can be used as an indicator of cell sensitivity or resistance to alkylating agents. Detection of minor subsets of resistant cells in heterogeneous populations by FCM analysis may be useful for monitoring emerging drug resistance.  相似文献   

12.
INTRODUCTION: Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. METHODS: Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. RESULTS: NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. CONCLUSIONS: These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments.  相似文献   

13.
BACKGROUND: Phycobiliproteins play an important role in fluorescent labeling, particularly for flow cytometry. The spectral properties of R-phycoerythrin (R-PE) and allophycocyanin (APC) have made them the dominant reagents in this class of fluorochromes. In this study, we evaluate a lesser-known but potentially important series of low-molecular weight cryptomonad-derived phycobiliproteins (commercially termed the CryptoFluortrade mark dyes) for their applicability to flow cytometry, both in extracellular and intracellular labeling applications. METHODS: Several cell lines were labeled with biotin-conjugated antibodies against expressed extracellular surface proteins, followed by streptavidin conjugates of three cryptomonad phycobiliproteins (CryptoFluor-2, CryptoFluor-4, and CryptoFluor-5). Cells were then analyzed by flow cytometry using a variety of laser lines and emission filters to establish the optimal excitation/emission characteristics for each fluorochrome. Some cells were permeabilized and labeled for intracellular antigens, also using the cryptomonad fluorochromes. Where appropriate, parallel samples were labeled with other fluorochromes (including R-PE, APC, the cyanin dyes Cy3 and Cy5, and others) to gauge the performance of the cryptomonad fluorochromes against fluorescent labels previously evaluated for flow cytometry. RESULTS: CryptoFluor-2 possessed excitation/emission maxima similar to those of APC and Cy5, with good excitation in the red (HeNe laser 632 nm) and strong emission in the far red (660 nm). CryptoFluor-4 possessed excitation/emission maxima similar to those of Cy3, with optimal excitation in the green (Kr 530 nm) and strong emission in the yellow/orange (585 nm). CryptoFluor-5 possessed excitation/emission maxima similar to those of lissamine rhodamine, with optimal excitation in the yellow (Kr 568 nm) and emission in the orange (610 nm). All cryptomonad fluorochromes gave satisfactory results for both intracellular and extracellular labeling, with detection sensitivities that were comparable or better than traditional phycobiliproteins and low- molecular weight synthetic fluorochromes such as the cyanin dyes. CONCLUSIONS: The CryptoFluor fluorochromes were applicable to flow cytometric immunodetection, with excitation and emission conditions commonly found on multilaser instruments. Performance of several of these dyes was at least comparable to existing fluorescent labels. The low molecular weights (30-60 kd) of phycobiliproteins may make them particularly useful in intracellular antigen detection. Cytometry 44:16-23, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

14.
Flow cytometric procedures are described to detect a "humanized" version of a new red fluorescent protein (DsRed) from the coral Discosoma sp. in conjunction with various combinations of three Aequorea victoria green fluorescent protein (GFP) variants--EYFP, EGFP, and ECFP. In spite of overlapping emission spectra, the combination of DsRed with EYFP, EGFP, and ECFP generated fluorescence signals that could be electronically compensated in real time using dual-laser excitation at 458 and 568 nm. Resolution of fluorescence signals from DsRed, EYFP, and EGFP was also readily achieved by single-laser excitation at 488 nm. Since many flow cytometers are equipped with an argon-ion laser that can be tuned to 488 nm, the DsRed/EYFP/EGFP combination is expected to have broad utility for facile monitoring of gene transfer and expression in mammalian cells. The dual-laser technique is applicable for use on flow cytometers equipped with tunable multiline argon-ion and krypton-ion lasers, providing the framework for studies requiring simultaneous analysis of four fluorescent gene products within living cells.  相似文献   

15.
Flow cytometric analysis of Chlamydia trachomatis interaction with L cells   总被引:2,自引:0,他引:2  
Immunofluorescent staining and flow cytometric analysis have been investigated as means of studying the early stages of in vitro infection of Chlamydia trachomatis. The lymphogranuloma venereum strain of C. trachomatis was grown in vitro in L cells, fixed in p-formaldehyde, stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal antibody to the chlamydial major outer membrane protein, and analyzed flow cytometrically. Infected cells stained 50-100 times more intensely than uninfected cells, and they could easily be discriminated by flow analysis. The number of infected cells and the fluorescence intensity of individual cells were proportional to the multiplicity of infection. The attachment of purified elementary bodies to L cells could be analyzed by immunofluorescence and flow cytometry. Cells exposed to 0.26 inclusion-forming units/cell could be discriminated from an unexposed population. Flow analysis of purified elementary bodies was possible after fluorescent staining with the aid of a laser-based cytometer and gating on low volume.  相似文献   

16.
Maksimow M  Hakkila K  Karp M  Virta M 《Cytometry》2002,47(4):243-247
BACKGROUND: In this study, Escherichia coli cells producing red fluorescent protein of Discosoma sp. (drFP583 DsRed) were investigated with flow cytometry by using 488 nm excitation. We also studied whether green fluorescent protein (GFP) and drFP583 could be detected simultaneously from a single bacterial cell. METHODS: Plasmids pDsRed and pEGFP were used for the production of drFP583 and enhanced GFP, respectively, in E. coli MC1061 cells. To produce enhanced GFP and drFP583 simultaneously, plasmids pG9R and pG19R were constructed. These encode tandem fusions of enhanced GFP and drFP583 to ensure similar production levels for both proteins. RESULTS: Bacteria producing enhanced GFP and drFP583 were found to be brightly green and red fluorescent, respectively. Production of enhanced GFP and drFP583 fusion proteins resulted in bacteria that emitted both green and red fluorescence, which was detected easily by a flow cytometer using single laser excitation. Previously reported tetramerization of drFP583 did not restrict its use as a reporter gene, although it maturated significantly slower than enhanced GFP. CONCLUSIONS: The results show that enhanced GFP and drFP583 proteins can be detected simultaneously from single bacteria with a standard flow cytometer with simple optical configuration.  相似文献   

17.
H M Shapiro 《Cytometry》1981,2(3):143-150
The addition of RNA content estimation to flow cytometric measurement of DNA content provides valuable information concerning cells' transitions between quiescent and proliferative states. Equilibrium staining methods employing acridine orange have been used for DNA/RNA content measurement but are difficult to apply to intact cells and impractical for use in conjunction with fluorescent antibodies or ligands for demonstration of cell surface structures. I have used a combination of Hoechst 33342 (HO342) and pyronin Y (PY) to stain intact cells for DNA/RNA content estimation with a dual source flow cytometer using UV and blue-green or green excitation, measuring HO342 fluorescence at 430--470 nm and PY fluorescence at 590--650 nm. Results obtained with cultured cells and stimulated lymphocytes are in good agreement with those obtained using acridine orange for DNA/RNA staining; about half of the PY fluorescence can be removed from ethanol-fixed cells stained with HO342 and PY by RNAse digestion. The HO342/PY method can be combined with fluorescein immunofluorescence for detection of cell surface markers. HO342 can be combined with other tricyclic heteroaromatic dyes for DNA/RNA estimation; the combination of HO342 and oxazine 1 can be excited in a dual source instrument using a mercury arc lamp and a helium-neon laser. The staining procedure is simple; cells in medium are incubated with 5 microM HO342 at 37 degrees C for 45 min, 5 microM PY (or oxazine 1) is then added and cells are analyzed without washing after an additional 45 min incubation. Suitability of these dye combinations for vital cell staining and sorting remains to be determined.  相似文献   

18.
BACKGROUND: The study of the molecular-genetic basis of heterogeneity of HLA class I expression in solid tumors is hampered by the lack of reliable rapid cell-by-cell isolation techniques. Hence, we studied the applicability of a flow cytometric approach (Corver et al.: Cytometry 2000;39;96-107). METHODS: Cells were isolated from five fresh cervical tumors and simultaneously stained for CD45 or vimentin (fluorescein isothiocyanate fluorescence), Keratin (R-phycoerythrin fluorescence), HLA class I (APC fluorescence), and DNA (propidium iodide fluorescence). A dual-laser flow cytometer was used for fluorescence analysis. Tissue sections from the corresponding tumors were stained for HLA class I antigens, keratin, vimentin, or CD45. RESULTS: Flow cytometry enabled the simultaneous measurement of normal stromal cells (vimentin positive), inflammatory cells (CD45 positive), epithelial cells (keratin positive), and DNA content readily. Normal stromal/inflammatory cells served as intrinsic HLA class I-positive as well as DNA-diploid references. Good DNA histogram quality was obtained (average coefficient of variation < 4%). Intratumor keratin positive subpopulations differing in HLA class I expression as well as DNA content could be clearly identified. Losses of allele-specific HLA class I expression found by immunohistochemistry were also detected by flow cytometry. CONCLUSIONS: We conclude that multiparameter DNA flow cytometry is a powerful tool to study loss of HLA class I expression in human cervical tumors. The method enables flow-sorting of discrete tumor and normal cell subpopulations for further molecular genetic analysis.  相似文献   

19.
A vital, nucleic acid stain (LDS-751) was used to discriminate intact from damaged cells in a flow cytometer even after the samples had been fixed with paraformaldehyde. Three major cell populations with different fluorescence properties with LDS-751 were found in the fixed samples. Cells not staining or only dimly staining with LDS-751 were identified as erythrocytes and platelets, respectively. Cells staining with intermediate amounts of LDS-751 were found to be intact cells, while cells intensively stained were identified as damaged cells. Confirmation of the identity of the populations was obtained by light microscopic examination of the sorted populations and by correlating the fluorescent signals of FDA and LDS-751 in nonfixed cell preparations. Agglutinated cells could also be identified by the increased fluorescent signal in the LDS-751 channel as compared with single cells. The spectral properties of this dye permit excitation at 488 nm with emission in the far red portion of the spectrum. This allowed two-color immunofluorescence to be combined with the intact/damaged cell discrimination on fixed samples. Therefore, intact single cells could be distinguished during flow cytometric analysis, increasing the accuracy of the immunofluorescence measurements. The visualization of the multidimensional data was facilitated using color to discriminate cell populations depicted in multiple perspectives.  相似文献   

20.
K Toba  E F Winton  R A Bray 《Cytometry》1992,13(1):60-67
We have developed an improved technique for triple staining that permits the simultaneous flow cytofluorometric analysis of cell surface antigens, bromodeoxyuridine incorporation into DNA, and DNA quantification using 7-amino-actinomycin D. PHA-activated human peripheral blood lymphocytes were incubated with bromodeoxyuridine and stained for cell surface phenotype with phycoerythrin-labeled monoclonal antibodies. Stained cells were fixed serially with 1% paraformaldehyde and 45% ethanol. Fixed cells were sequentially stained with an anti-BrdUrd monoclonal antibody followed by a FITC-conjugated goat anti-mouse antibody and incubated with 7-amino-actinomycin D. Hypotonic buffer was employed for all procedures after fixation. Stained-fixed cells were analyzed by flow cytofluorometry for simultaneous green (525 nm), orange (570 nm), and red (greater than 650 nm) fluorescence. Utilizing this staining technique, we were able to analyze simultaneously cell phenotype, DNA synthesis, and total cellular DNA content with single laser excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号