首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
Mohler J  Pardue ML 《Genetics》1984,106(2):249-265
The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.  相似文献   

6.
7.
Temperature shock (TS) results in activation of a specific set of puffs in polytene nuclei of D. melanogaster. Earlier studies in this species from several laboratories revealed certain unique features of the major TS puff at 93D locus, which is also specifically induced by benzamide (BM) and by incubation of glands in heat shocked glands' homogenate (HSGH). We have now extended studies on TS response to several other species of Drosophila to ascertain whether loci homologous to 93D puff of D. melanogaster are present in other species. In polytene nuclei of two closely related (D. ananassae, D. kikkawai) and in two distantly related species (D. hydei, D. nasuta), six to nine puffs are induced by TS. Interestingly, in each species one of the major TS puffs, viz., 2L-2C in D. ananassae, E-11BC in D. kikkawai, 2R-48A in D. nasuta and 2-48C in D. hydei, is also specifically induced by BM, autologous species' HSGH and vitamine-B6 (vit-B6) treatment. HSGH of a different species fails to induce these puffs. These puffs thus resemble the 93D locus of D. melanogaster, although the 93D puff does not respond to vit-B6. These observations are discussed in relation to the conservation of 93D puff locus in different species of Drosophila.  相似文献   

8.
9.
In situ hybridization of cRNA transcribed from cloned D. melanogaster heat shock sequences to D. hydei chromosomes has shown that the D. hydei locus 2–32 A corresponds to the D. melanogaster locus 87 A/C and the D. hydei locus 2–36 A to the D. melanogaster locus 95 D, while the D. hydei locus 4–81 B corresponds to the D. melanogaster locus 63 BC. No hybridization to D. hydei chromosomes was found with cRNA transcribed from a clone containing the sequences encoded by the D. melanogaster locus 87 C. Neither D. melanogaster heat shock RNA nor D. virilis heat shock RNA hybridized significantly to the D. hydei heat shock locus 2–48 B. Furthermore, D. hydei heat shock RNA did not hybridize to the cytological homologs of locus 2–48 B found in D. repleta or in D. virilis. D, hydei heat shock. RNA did hybridize to the cytological homologs of locus 2–48 B in D. neohydei and D. eohydei, both of which belong to the hydei subgroup.  相似文献   

10.
11.
12.
13.
Synaptic transmission is a critical mechanism for transferring information from the nervous system to the body. Environmental stress, such as extreme temperature, can disrupt synaptic transmission and result in death. Previous work on larval Drosophila has shown that prior heat‐shock exposure protects synaptic transmission against failure during subsequent thermal stress. This induced thermoprotection has been ascribed to an up‐regulation of the inducible heat‐shock protein, Hsp70. However, the mechanisms mediating natural thermoprotection in the wild are unknown. We compared synaptic thermosensitivity between D. melanogaster and a desert species, D. arizonae. Synaptic thermosensitivity and the functional limits of the related locomotor behavior differed significantly between closely related, albeit ecologically distinct species. Locomotory behavior of wandering third instar D. arizonae larvae was less thermosensitive and the upper temperature limit of locomotory function exceeded that of D. melanogaster by 6°C. Behavioral results corresponded with significantly lower synaptic thermosensitivity at the neuromuscular junction in D. arizonae. Prior heat‐shock protected only D. melanogaster by increasing relative excitatory junctional potential (EJP) duration, the time required for EJP failure at 40°C, and the incidence of EJP recovery following heat‐induced failure. Hsp70 induction profiles following heat‐shock demonstrate up‐regulation of inducible Hsp70 in D. melanogaster but not in D. arizonae. However, expression of Hsp70 under control conditions is greater in D. arizonae. These results suggest that the mechanisms of natural thermoprotection involve an increase in baseline Hsp70 expression. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

14.
Fluorochrome-labeled RNA allows the rapid detection of in situ hybrids without the need for long exposure times as in the autoradiographical hybridisation methods. Resolution is high because of the high resolving power of fluorescence microscopy. The application of a previously reported method for the hybrido-cytochemical detection of DNA sequences to polytene chromosomes of Drosophilia is described. — The specificity and sensitivity of the method are demonstrated by the hybridisation with polytene chromosomes of 1) rhodamine-labeled 5S RNA, to the 5S rRNA sites of D. melanogaster (56F) and D. hydei (23 B), 2) rhodamine-labeled RNA complementary to a plasmid containing histone genes, to the 39DE region of D. melanogaster, 3) rhodamine-labeled D. melanogaster tRNA species (Gly-3 and Arg-2), to their respective loci in D. melanogaster, 4) rhodamine-labeled RNA complementary to the insert of plasmid 232.1 containing part of a D. melanogaster heat shock gene from locus 87 C, to D. hydei heat shock locus 2-32A. In the latter instance it was possible to demonstrate the labeling of a double band which escaped unambiguous detection by autoradiography in the radioactive cytochemical hybridisation procedure because of the low topological resolution of autoradiograms. — The sensitivity of the fluorochrome-labeled RNA method is compared with the radioactive methods which use 3H- or 125I-labeled RNAs. The factors governing the sensitivity and the number of bound fluorochrome molecules to be expected are discussed.Dedicated to Professor W. Beermann in honour of his 60th birthday  相似文献   

15.
16.
Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogasterD. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.  相似文献   

17.
18.
19.
20.
Voltage-gated ion channels are essential for electrical signaling in neurons and other excitable cells. Among them, voltage-gated sodium and calcium channels are four-domain proteins, and ion selectivity is strongly influenced by a ring of amino acids in the pore regions of these channels. Sodium channels contain a DEKA motif (i.e., amino acids D, E, K, and A at the pore positions of domains I, II, III, and IV, respectively), whereas voltage-gated calcium channels contain an EEEE motif (i.e., acidic residues, E, at all four positions). Recently, a novel family of ion channel proteins that contain an intermediate DEEA motif has been found in a variety of invertebrate species. However, the physiological role of this new family of ion channels in animal biology remains elusive. DSC1 in Drosophila melanogaster is a prototype of this new family of ion channels. In this study, we generated two DSC1 knockout lines using ends-out gene targeting via homologous recombination. DSC1 mutant flies exhibited impaired olfaction and a distinct jumpy phenotype that is intensified by heat shock and starvation. Electrophysiological analysis of the giant fiber system (GFS), a well-defined central neural circuit, revealed that DSC1 mutants are altered in the activities of the GFS, including the ability of the GFS to follow repetitive stimulation (i.e., following ability) and response to heat shock, starvation, and pyrethroid insecticides. These results reveal an important role of the DSC1 channel in modulating the stability of neural circuits, particularly under environmental stresses, likely by maintaining the sustainability of synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号