首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Potential of mean force for protein-protein interaction studies.   总被引:5,自引:0,他引:5  
Calculating protein-protein interaction energies is crucial for understanding protein-protein associations. On the basis of the methodology of mean-field potential, we have developed an empirical approach to estimate binding free energy for protein-protein interactions. This knowledge-based approach has been used to derive distance-dependent free energies of protein complexes from a nonredundant training set in the Protein Data Bank (PDB), with a careful treatment of homology. We calculate atom pair potentials for 16 pair interactions, which can reflect the importance of hydrophobic interactions and specific hydrogen-bonding interactions. The derived potentials for hydrogen-bonding interactions show a valley of favorable interactions at a distance of approximately 3 A, corresponding to that of an established hydrogen bond. For the test set of 28 protein complexes, the calculated energies have a correlation coefficient of 0.75 compared with experimental binding free energies. The performance of the method in ranking the binding energies of different protein-protein complexes shows that the energy estimation can be applied to value binding free energies for protein-protein associations.  相似文献   

2.
Protein recognition is one of the most challenging and intriguing problems in structural biology. Despite all the available structural, sequence and biophysical information about protein-protein complexes, the physico-chemical patterns, if any, that make a protein surface likely to be involved in protein-protein interactions, remain elusive. Here, we apply protein docking simulations and analysis of the interaction energy landscapes to identify protein-protein interaction sites. The new protocol for global docking based on multi-start global energy optimization of an all-atom model of the ligand, with detailed receptor potentials and atomic solvation parameters optimized in a training set of 24 complexes, explores the conformational space around the whole receptor without restrictions. The ensembles of the rigid-body docking solutions generated by the simulations were subsequently used to project the docking energy landscapes onto the protein surfaces. We found that highly populated low-energy regions consistently corresponded to actual binding sites. The procedure was validated on a test set of 21 known protein-protein complexes not used in the training set. As much as 81% of the predicted high-propensity patch residues were located correctly in the native interfaces. This approach can guide the design of mutations on the surfaces of proteins, provide geometrical details of a possible interaction, and help to annotate protein surfaces in structural proteomics.  相似文献   

3.
We propose a novel method for defining patterns of contacts present in protein-protein complexes. A new use of the traditional contact maps (more frequently used for representation of the intra-chain contacts) is presented for analysis of inter-chain contacts. Using an algorithm based on image processing techniques, we can compare protein-protein interaction maps and also obtain a dissimilarity score between them. The same algorithm used to compare the maps can align the contacts of all the complexes and be helpful in the determination of a pattern of conserved interactions at the interfaces. We present an example for the application of this method by analyzing the pattern of interaction of bovine pancreatic trypsin inhibitors and trypsins, chymotrypsins, a thrombin, a matriptase, and a kallikrein - all classified as serine proteases. We found 20 contacts conserved in trypsins and chymotrypsins and 3 specific ones are present in all the serine protease complexes studied. The method was able to identify important contacts for the protein family studied and the results are in agreement with the literature.  相似文献   

4.
Understanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable conformations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together, these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein association occurring in functional biomolecular complexes.  相似文献   

5.
Protein docking and complementarity   总被引:22,自引:0,他引:22  
Predicting the structures of protein-protein complexes is a difficult problem owing to the topographical and thermodynamic complexity of these structures. Past efforts in this area have focussed on fitting the interacting proteins together using rigid body searches, usually with the conformations of the proteins as they occur in crystal structure complexes. Here we present work which uses a rigid body docking method to generate the structures of three known protein complexes, using both the bound and unbound conformations of the interacting molecules. In all cases we can regenerate the geometry of the crystal complexes to high accuracy. We also are able to find geometries that do not resemble the crystal structure but nevertheless are surprisingly reasonable both mechanistically and by some simple physical criteria. In contrast to previous work in this area, we find that simple methods for evaluating the complementarity at the protein-protein interface cannot distinguish between the configurations that resemble the crystal structure complex and those that do not. Methods that could not distinguish between such similar and dissimilar configurations include surface area burial, solvation free energy, packing and mechanism-based filtering. Evaluations of the total interaction energy and the electrostatic interaction energy of the complexes were somewhat better. Of the techniques that we tried, energy minimization distinguished most clearly between the "true" and "false" positives, though even here the energy differences were surprisingly small. We found the lowest total interaction energy from amongst all of the putative complexes generated by docking was always within 5 A root-mean-square of the crystallographic structure. There were, however, several putative complexes that were very dissimilar to the crystallographic structure but had energies that were close to that of the low energy structure. The magnitude of the error in energy calculations has not been established in macromolecular systems, and thus the reliability of the small differences in energy remains to be determined. The ability of this docking method to regenerate the crystallographic configurations of the interacting proteins using their unbound conformations suggests that it will be a useful tool in predicting the structures of unsolved complexes.  相似文献   

6.
The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.  相似文献   

7.
We have studied the effect of point mutations of the primary binding residue (P1) at the protein-protein interface in complexes of chymotrypsin and elastase with the third domain of the turkey ovomucoid inhibitor and in trypsin with the bovine pancreatic trypsin inhibitor, using molecular dynamics simulations combined with the linear interaction energy (LIE) approach. A total of 56 mutants have been constructed and docked into their host proteins. The free energy of binding could be reliably calculated for 52 of these mutants that could unambiguously be fitted into the binding sites. We find that the predicted binding free energies are in very good agreement with experimental data with mean unsigned errors between 0.50 and 1.03 kcal/mol. It is also evident that the standard LIE model used to study small drug-like ligand binding to proteins is not suitable for protein-protein interactions. Three different LIE models were therefore tested for each of the series of protein-protein complexes included, and the best models for each system turn out to be very similar. The difference in parameterization between small drug-like compounds and protein point mutations is attributed to the preorganization of the binding surface. Our results clearly demonstrate the potential of free energy calculations for probing the effect of point mutations at protein-protein interfaces and for exploring the principles of specificity of hot spots at the interface.  相似文献   

8.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

9.
Identification and characterization of multi-protein complexes is an important step toward an integrative view of protein-protein interaction networks that determine protein function and cell behavior. The limiting factor for identifying protein complexes is the method for their separation. Blue native PAGE (BN-PAGE) permits a high-resolution separation of multi-protein complexes under native conditions. To date, BN-PAGE has only been applicable to purified material. Here, we show that dialysis permits the analysis of multi-protein complexes of whole cellular lysates by BN-PAGE. We visualized different multi-protein complexes by immunoblotting including forms of the eukaryotic proteasome. Complex dynamics after gamma interferon stimulation of cells was studied, and an antibody shift assay was used to detect protein-protein interactions in BN-PAGE. Furthermore, we identified defined protein complexes of various proteins including the tumor suppressor p53 and c-Myc. Finally, we identified multi-protein complexes via mass spectrometry, showing that the method has a wide potential for functional proteomics.  相似文献   

10.
Kozakov D  Brenke R  Comeau SR  Vajda S 《Proteins》2006,65(2):392-406
The Fast Fourier Transform (FFT) correlation approach to protein-protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigenvectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure-based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein-protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme-inhibitor complexes. With the new FFT-based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near-native docked conformations. Although the potential is far from optimal for antibody-antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications.  相似文献   

11.
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.  相似文献   

12.
We develop a stochastic model for quantifying the binary measurements of protein-protein interactions. A key concept in the model is the binary response function (BRF) which represents the conditional probability of successfully detecting a protein-protein interaction with a given number of the protein complexes. A popular form of the BRF is introduced and the effect of the sharpness (Hill's coefficient) of this function is studied. Our model is motivated by the recently developed yeast two-hybrid method for measuring protein-protein interaction networks. We suggest that the same phenomenological BRF can also be applied to the mass spectroscopic measurement of protein-protein interactions. Based on the model, we investigate the contributions to the network topology of protein-protein interactions from (i) the distribution of protein binary association free energy, and from (ii) the cellular protein abundance. It is concluded that the association constants among different protein pairs cannot be totally independent. It is also shown that not only the association constants but also the protein abundance could be a factor in producing the power-law degree distribution of protein-protein interaction networks.  相似文献   

13.
Lee AJ  Lin MC  Hsu CM 《Bio Systems》2011,103(3):392-399
Many methods have been proposed for mining protein complexes from a protein-protein interaction network; however, most of them focus on unweighted networks and cannot find overlapping protein complexes. Since one protein may serve different roles within different functional groups, mining overlapping protein complexes in a weighted protein-protein interaction network has attracted more and more attention recently. In this paper, we propose an effective method, called MDOS (Mining Dense Overlapping Subgraphs), for mining dense overlapping protein complexes (subgraphs) in a weighted protein-protein interaction network. The proposed method can integrate the information about known complexes into a weighted protein-protein interaction network to improve the mining results. The experiment results show that our method mines more known complexes and has higher sensitivity and accuracy than the CODENSE and MCL methods.  相似文献   

14.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   

15.
Vasilescu J  Guo X  Kast J 《Proteomics》2004,4(12):3845-3854
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.  相似文献   

16.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

17.
Predicting interactions in protein networks by completing defective cliques   总被引:6,自引:0,他引:6  
Datasets obtained by large-scale, high-throughput methods for detecting protein-protein interactions typically suffer from a relatively high level of noise. We describe a novel method for improving the quality of these datasets by predicting missed protein-protein interactions, using only the topology of the protein interaction network observed by the large-scale experiment. The central idea of the method is to search the protein interaction network for defective cliques (nearly complete complexes of pairwise interacting proteins), and predict the interactions that complete them. We formulate an algorithm for applying this method to large-scale networks, and show that in practice it is efficient and has good predictive performance. More information can be found on our website http://topnet.gersteinlab.org/clique/ CONTACT: Mark.Gerstein@yale.edu SUPPLEMENTARY INFORMATION: Supplementary Materials are available at Bioinformatics online.  相似文献   

18.
19.
Understanding energetics and mechanism of protein-protein association remains one of the biggest theoretical problems in structural biology. It is assumed that desolvation must play an essential role during the association process, and indeed protein-protein interfaces in obligate complexes have been found to be highly hydrophobic. However, the identification of protein interaction sites from surface analysis of proteins involved in non-obligate protein-protein complexes is more challenging. Here we present Optimal Docking Area (ODA), a new fast and accurate method of analyzing a protein surface in search of areas with favorable energy change when buried upon protein-protein association. The method identifies continuous surface patches with optimal docking desolvation energy based on atomic solvation parameters adjusted for protein-protein docking. The procedure has been validated on the unbound structures of a total of 66 non-homologous proteins involved in non-obligate protein-protein hetero-complexes of known structure. Optimal docking areas with significant low-docking surface energy were found in around half of the proteins. The 'ODA hot spots' detected in X-ray unbound structures were correctly located in the known protein-protein binding sites in 80% of the cases. The role of these low-surface-energy areas during complex formation is discussed. Burial of these regions during protein-protein association may favor the complexed configurations with near-native interfaces but otherwise arbitrary orientations, thus driving the formation of an encounter complex. The patch prediction procedure is freely accessible at http://www.molsoft.com/oda and can be easily scaled up for predictions in structural proteomics.  相似文献   

20.
Bai H  Ma W  Liu S  Lai L 《Proteins》2008,70(4):1323-1331
Dynamic property is highly correlated with the biological functions of macromolecules, such as the activity and specificity of enzymes and the allosteric regulation in the signal transduction process. Applications of the dynamic property to protein function researches have been discussed and encouraging progresses have been achieved, for example, in enzyme activity and protein-protein docking studies. However, how the global dynamic property contributes to protein-protein interaction was still unclear. We have studied the dynamic property in protein-protein interactions based on Gaussian Network Model and applied it to classify biological and nonbiological protein-protein complexes in crystal structures. The global motion correlation between residues from the two protomers was found to be remarkably different for biological and nonbiological complexes. This correlation has been used to discriminate biological and nonbiological complexes in crystal and gave a classification rate of 86.9% in the cross-validation test. The innovation of this feature is that it is a global dynamic property which does not rely directly on the interfacial properties of the complex. In addition, the correlation of the global motions was found to be weakly correlated with the dissociation rate constant of protein complexes. We suggest that the dynamic property is a key determinant for protein-protein interaction, which can be used to discriminate native and crystal complexes and potentially be applied in protein-protein dynamic rate constants estimations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号