首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
An inducible mycelial beta-glucosidase from Scytalidum thermophilum was characterized. The enzyme exhibited a pI of 6.5, a carbohydrate content of 15%, and an apparent molecular mass of about 40 kDa. Optima of temperature and pH were 60 degrees C and 6.5, respectively. The enzyme was stable up to 1 h at 50 degrees C and exhibited a half-life of 20 min at 55 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-d-glucopyranoside, p-nitrophenyl-beta-d-xylopyranoside, o-nitrophenyl-beta-d-galactopyranoside, p-nitrophenyl-alpha-arabinopyranoside, cellobiose, laminaribiose and lactose. Kinetic studies indicated that the same enzyme hydrolyzed these substrates. Beta-Glucosidase was activated by glucose or xylose at concentration varying from 50 to 200 mM. The apparent affinity constants (K0.5) for glucose and xylose were 36.69 and 43.24 mM, respectively. The stimulatory effect of glucose and xylose on the S. thermophilum beta-glucosidase is a novel characteristic which distinguish this enzyme from all other beta-glucosidases so far described.  相似文献   

2.
A major beta-glucosidase I and a minor beta-glucosidase II were purified from culture filtrates of the fungus Trichoderma reesei grown on wheat straw. The enzymes were purified using CM-Sepharose CL-6B cation-exchange and DEAE Bio-Gel A anion-exchange chromatography steps, followed by Sephadex G-75 gel filtration. The isolated enzymes were homogeneous in SDS-polyacrylamide gel electrophoresis and isoelectric focusing. beta-Glucosidase I (71 kDa) was isoelectric at pH 8.7 and contained 0.12% carbohydrate; beta-glucosidase II (114 kDa) was isoelectric at pH 4.8 and contained 9.0% carbohydrate. Both enzymes catalyzed the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (pNPG). The Km and kcat/Km values for cellobiose were 2.10 mM, 2.45.10(4) s-1 M-1 (beta-glucosidase I) and 11.1 mM, 1.68.10(3) s-1 M-1 (beta-glucosidase II). With pNPG as substrate the Km and kcat/Km values were 182 microM, 7.93.10(5) s-1 M-1 (beta-glucosidase I) and 135 microM, 1.02.10(6) s-1 M-1 (beta-glucosidase II). The temperature optimum was 65-70 degrees C for beta-glucosidase I and 60 degrees C for beta-glucosidase II, the pH optimum was 4.6 and 4.0, respectively. Several inhibitors were tested for their action on both enzymes. beta-Glucosidase I and II were competitively inhibited by desoxynojirimycin, gluconolactone and glucose.  相似文献   

3.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

4.
Intracellular, inducible beta-glucosidase from the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile (ATCC 42464) was fractionated by gel chromatography or isoelectric focusing into components A and B. Enzyme A (molecular weight 440,000) had only aryl-beta-glucosidase activity, whereas enzyme B (molecular weight 40,000) hydrolyzed several beta-glucosides but had only low activity against o-nitrophenyl-beta-d-glucopyranoside (ONPG). Both enzymes had temperature optima of about 50 degrees C. The pH optimum was 5.6 for enzyme A and 6.3 for enzyme B, respectively. The K(m) (ONPG) value for enzyme A was 0.5 mM, and the corresponding values for enzyme B were 0.18 mM (ONPG) and 0.28 mM (cellobiose). Enzyme B, when tested with ONPG, showed substrate inhibition at a substrate concentration above 0.4 mM which could be released by cellobiitol and other alditols. Enzyme A was isoelectric at pH 4.48, and enzyme B was isoelectric at pH 4.64. Several inhibitors were tested for their action on the activity of enzymes A and B. Both enzymes were found to be concomitantly induced in cultures with either cellobiose or cellulose as carbon source.  相似文献   

5.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

6.
An extracellular beta-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC-MS/MS suggested that the protein has high homology with fungal beta-glucosidases that belong to glycosyl hydrolase family 3. The Kms for p-nitorophenyl-beta-D-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the Kcat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (Ki= 0.35 mM) and gluconolactone (Ki= 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified beta-glucosidase was observed at pH 4.5 and 70 degrees. The F. palustris protein exhibited half-lives of 97 h at 55 degrees and 15 h at 65 degrees, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-beta-lactoside, p-nitrophenyl-beta-xyloside, p-nitrophenyl-alpha-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the beta-glucosidase from F. palustris can be classified as an aryl-beta-glucosidase with cellobiase activity.  相似文献   

7.
A beta-glucosidase (EC 3.2.1.21) from the fungus Aspergillus terreus was purified to homogeneity as indicated by disc acrylamide gel electrophoresis. Optimal activity was observed at pH 4.8 and 50 degrees C. The beta-glucosidase had K(m) values of 0.78 and 0.40 mM for p-nitrophenyl-beta-d-glucopyranoside and cellobiose, respectively. Glucose was a competitive inhibitor, with a K(i) of 3.5 mM when p-nitrophenyl-beta-d-glucopyranoside was used as the substrate. The specific activity of the enzyme was found to be 210 IU and 215 U per mg of protein on p-nitrophenyl-beta-d-glucopyranoside and cellobiose substrates, respectively. Cations, proteases, and enzyme inhibitors had little or no effect on the enzyme activity. The beta-glucosidase was found to be a glycoprotein containing 65% carbohydrate by weight. It had a Stokes radius of 5.9 nm and an approximate molecular weight of 275,000. The affinity and specific activity that the isolated beta-glucosidase exhibited for cellobiose compared favorably with the values obtained for beta-glucosidases from other organisms being studied for use in industrial cellulose saccharification.  相似文献   

8.
A color variant strain of Aureobasidium pullulans (NRRL Y-12974) produced beta-glucosidase activity when grown in liquid culture on a variety of carbon sources, such as cellobiose, xylose, arabinose, lactose, sucrose, maltose, glucose, xylitol, xylan, cellulose, starch, and pullulan. An extracellular beta-glucosidase was purified 129-fold to homogeneity from the cell-free culture broth of the organism grown on corn bran. The purification protocol included ammonium sulfate treatment, CM Bio-Gel A agarose column chromatography, and gel filtrations on Bio-Gel A-0.5m and Sephacryl S-200. The beta-glucosidase was a glycoprotein with native molecular weight of 340,000 and was composed of two subunits with molecular weights of about 165,000. The enzyme displayed optimal activity at 75 degrees C and pH 4.5 and had a specific activity of 315 mumol . min . mg of protein under these conditions. The purified beta-glucosidase was active against p-nitrophenyl-beta-d-glucoside, cellobiose, cellotriose, cellotetraose, cellopentaose, cellohexaose, and celloheptaose, with K(m) values of 1.17, 1.00, 0.34, 0.36, 0.64, 0.68, and 1.65 mM, respectively. The enzyme activity was competitively inhibited by glucose (K(i) = 5.65 mM), while fructose, arabinose, galactose, mannose, and xylose (each at 56 mM) and sucrose and lactose (each at 29 mM) were not inhibitory. The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol (7.5%, vol/vol) stimulated the initial enzyme activity by 15%. Glucose production was enhanced by 7.9% when microcrystalline cellulose (2%, wt/vol) was treated for 48 h with a commercial cellulase preparation (5 U/ml) that was supplemented with the purified beta-glucosidase (0.21 U/ml) from A. pullulans.  相似文献   

9.
A fungal strain, BCC2871 (Periconia sp.), was found to produce a thermotolerant beta-glucosidase, BGL I, with high potential for application in biomass conversion. The full-length gene encoding the target enzyme was identified and cloned into Pichia pastoris KM71. Similar to the native enzyme produced by BCC2871, the recombinant beta-glucosidase showed optimal temperature at 70 degrees C and optimal pH of 5 and 6. The enzyme continued to exhibit high activity even after long incubation at high temperature, retaining almost 60% of maximal activity after 1.5h at 70 degrees C. It was also stable under basic conditions, retaining almost 100% of maximal activity after incubation for 2h at pH8. The enzyme has high activity towards cellobiose and other synthetic substrates containing glycosyl groups as well as cellulosic activity toward carboxymethylcellulose. Thermostability of the enzyme was improved remarkably in the presence of cellobiose, glucose, or sucrose. This beta-glucosidase was able to hydrolyze rice straw into simple sugars. The addition of this beta-glucosidase to the rice straw hydrolysis reaction containing a commercial cellulase, Celluclast 1.5L (Novozyme, Denmark) resulted in increase of reducing sugars being released compared to the hydrolysis without the beta-glucosidase. This enzyme is a candidate for applications that convert lignocellulosic biomass to biofuels and chemicals.  相似文献   

10.
A beta-glucosidase with cellobiase activity was purified to homogeneity from the culture filtrate of the mushroom Termtomyces clypeatus. The enzyme had optimum activity at pH 5.0 and temperature 65 degrees C and was stable up to 60 degrees C and within pH 2-10. Among the substrates tested, p-nitrophenyl-beta-D-glucopyranoside and cellobiose were hydrolysed best by the enzyme. Km and Vm values for these substrates were 0.5, 1.25 mM and 95, 91 mumol/min per mg, respectively. The enzyme had low activity towards gentiobiose, salicin and beta-methyl-D-glucoside. Glucose and cellobiose inhibited the beta-D-glucosidase (PNPGase) activity competitively with Ki of 1.7 and 1.9 mM, respectively. Molecular mass of the native enzyme was approximated to be 450 kDa by HPLC, whereas sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a molecular mass of 110 kDa. The high molecular weight enzyme protein was present both intracellularly and extracellularly from the very early growth phase. The enzyme had a pI of 4.5 and appeared to be a glycoprotein.  相似文献   

11.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

12.
The plasmid pND71, which encodes beta-glucosidase (cellobiase) activity, cloned from the cellulolytic Pseudomonad, PS2-2, was mobilized by conjugation into 10 Pseudomonas strains. The highest specific activity was produced by 17498 (pND71) and the properties of the enzyme produced from this transconjugant were studied. The enzyme was shown to be cell associated, to have a temperature optimum of 37 degrees C, a pH optimum of 7.0 and Km values of 1.33 and 2.94 mM for pNPG and cellobiose respectively. It was competitively inhibited by glucose, with a Ki of 30 mM. Evidence was obtained which suggested that the enzyme was produced constitutively and that synthesis was not repressed by glucose. When culture preparations were used in combination with Trichoderma reesei QM9414 and C30 enzyme preparations to saccharify cellulose, 17498 (pND71) was more effective than preparations of PS2-2 in acting synergistically with T. reesei to solubilize more carbohydrate and produce more glucose.  相似文献   

13.
Intracellular beta-glucosidase was extracted from the mycelium of Th. aurantiacus, concentrated by DEAE-cellulose treatment, separated from alpha-glucosidase by hydroxylapatite chromatography and purified to electrophoretic homogeneity. Optimally active at 75 degrees C and pH 4.2, beta-glucosidase displayed complex kinetics with p-nitrophenyl-beta-glucoside which inhibited the enzyme at concentrations greater than 0.5 mM. With cellobiose the kinetics were practically hyperbolic at 70 degrees C (Hill coefficient nH = 1.09 and Km = 0.83 mM), but faint inhibition was observed at 50 degrees C. beta-glucosidase shares with alpha-glucosidase a high number of physicochemical properties: with similar aminoacid composition, very close isoelectric point (4.5 and 4.2), high molecular weight in the native state (175,000 and 140,000), the two enzymes showed the same behaviour on DEAE-cellulose, were equally stable at high temperature and were dissociated by 6 M urea to still active proteins. Furthermore, the carbohydrate contents of beta-glucosidase (17.6%) is not far from that previously determined for some forms of alpha-glucosidase (14-16%).  相似文献   

14.
Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.  相似文献   

15.
The gene encoding a thermostable beta-glucosidase (cel3a) was isolated from the thermophilic fungus Talalaromyces emersonii by degenerate PCR and expressed in the filamentous fungus Trichoderma reesei. The cel3a gene encodes an 857 amino acid long protein with a calculated molecular weight of 90.59 kDa. Tal. emersonii beta-glucosidase falls into glycosyl hydrolase family 3, showing approximately 56 and 67% identity with Cel3b (GenBank ) from T. reesei, and a beta-glucosidase from Aspergillus Niger (GenBank ), respectively. The heterologously expressed enzyme, Cel3a, was a dimer equal to 130 kDa subunits with 17 potential N-glycosylation sites and a previously unreported beta-glucosidase activity produced extracellularly by Tal. emersonii. Cel3a was thermostable with an optimum temperature of 71.5 degrees C and half life of 62 min at 65 degrees C and was a specific beta-glucosidase with no beta-galactosidase side activity. Cel3a had a high specific activity against p-nitrophenyl-beta-D-glucopyranoside (Vmax, 512 IU/mg) and was competitively inhibited by glucose (k(i), 0.254 mM). Cel3a was also active against natural cellooligosacharides with glucose being the product of hydrolysis. It displayed transferase activity producing mainly cellobiose from glucose and cellotetrose from cellobiose.  相似文献   

16.
A mutant of Alternaria alternata excreted enhanced levels of carboxymethylcellulase and particularly beta-glucosidase when grown in cellulose liquid media. Both enzymes were purified two- to four-fold by ammonium sulfate precipitation and gel filtration, and the kinetic data showed K(m) values of 16.64 mg/ml of culture fluid for carboxymethylcellulase and 0.14 mM p-nitrophenyl-beta-d-glucoside and 0.81 mM cellobiose for beta-glucosidase at pH 5. Carboxymethylcellulase and extracellular beta-glucosidase functioned optimally at pH 5 to 6 and 4.5 to 5 and at temperatures of 55 to 60 and 70 to 75 degrees C, respectively. Both temperature optima and thermostability of beta-glucosidase were among the highest ever reported for the same enzyme excreted from cellulase and beta-glucosidase hyperproducing microorganisms.  相似文献   

17.
An extracellular beta-glucosidase was purified from culture filtrates of the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm grown on 1.0% (w/v) carboxymethyl-cellulose using ammonium sulfate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is monomeric with a molecular weight of 64.2 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and has a pI of 8.55. The enzyme catalyzes the hydrolysis of p-nitrophenyl-beta-D-glucopyranoside (PNPG) as the substrate, with a K(m) of 1.52 mM, and V(max) of 3.21 U min mg(-1) protein. Glucose competitively inhibited beta-glucosidase with a K(i) value of 0.79 mM. Optimal activity with PNPG as the substrate was at pH 5.0 and 50 degrees C. The enzyme was stable at pH 5.0 at temperatures up to 50 degrees C. The purified beta-glucosidase was active against PNPG, cellobiose, sophorose, laminaribiose and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel or o-nitrophenyl-beta-d-galactopyranoside. The activity of beta-glucosidase was stimulated by Ca(2+), Co(2+), Mg(2+), Mn(2+), glycerol, dimethyl sulfoxide (DMSO), dithiothreitol and EDTA, and strongly inhibited by Hg(2+). The internal amino acid sequences of D. eschscholziibeta-glucosidase have similarity to the sequences of the family 3 beta-glucosyl hydrolase.  相似文献   

18.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

19.
Pichia pastoris beta-glucosidase was purified to apparent homogeneity by salting out with ammonium sulfate, gel filtration, and ion-exchange chromatography with Q-Sepharose and CM-Sepharose. The enzyme is a tetramer (275 kD) made up of four identical subunits (70 kD). The pH optimum is 7.3, and it is fairly stable in the pH range 5.5-9.5. The temperature optimum is 40 degrees C. The purified beta-glucosidase is effectively active on p-/o-nitrophenyl-beta-D-glucopyranosides (p-/o-NPG) and 4-methylumbelliferyl-beta-D-glucopyranoside (4-MUG) with Km values of 0.12, 0.22, and 0.096 mM and Vmax values of 10.0, 11.7, and 6.2 micromol/min per mg protein, respectively. It also exhibits different levels of activity against p-nitrophenyl-1-thio-beta-D-glucopyranoside, cellobiose, gentiobiose, amygdalin, prunasin, salicin, and linamarin. The enzyme is competitively inhibited by gluconolactone, p-/o-nitrophenyl-beta-D-fucopyranosides (p-/o-NPF), and glucose against p-NPG as substrate. o-NPF is the most effective inhibitor of the enzyme activity with Ki value of 0.41 mM. The enzyme is more tolerant to glucose inhibition with Ki value of 7.2 mM for p-NPG. Pichia pastoris has been employed as a host for the functional expression of heterologous beta-glucosidases and the risk of high background beta-glucosidase activity is discussed.  相似文献   

20.
beta-Glucosidase was purified from the culture supernatant of Penicillium purpurogenum. The purified enzyme was homogeneous on both nondenaturing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The enzyme is a monomeric glycoprotein with M(r) of 90,000 as determined by gel filtration on Bio-Gel P-300 and SDS-polyacrylamide gels. Two enzyme forms were resolved by chromatofocusing and isoelectric focusing, and the pI values obtained with both methods were 4.2 (major form) and 6.0. The major form was characterised further. Enzyme activity was optimal at pH 3.5 and at 60 degrees C. The enzyme was stable in the pH range 2.5-9.5 for 24 h at 4 degrees C. Kinetic analysis gave Kms of 0.8 mM for cellobiose and 85 microM for p-nitrophenyl-beta-D-glucopyranoside. The enzyme hydrolyses a wide range of substrates including aryl-beta-glucosides, cellobiose, and amygdalin. Glucose inhibits competitively and glucono-delta-lactone is a mixed inhibitor of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号