首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. F. Witty 《Plant and Soil》1979,52(2):151-164
Summary N2-fixation by algae on the Broadbalk continuous wheat experiment was measured over a two year period using the acetylene reduction technique. The plots studied receive spring fertilizer treatments including farmyard manure and combinations of nitrochalk and Na, P, K and Mg which have remained much the same since the experiment started in 1843.Nitrogen applied at 196 kg ha–1 in spring suppressed algal N2-fixation until late in the season but at lower levels (48 kg N ha–1) the denser plant canopy increased both surface moisture and fixation. Herbicide treatment decreased fixation on plots of moderate nutritional status early in the season but had little effect on unfertilised plots where weed cover was sparse. On plots where weed and crop cover was very dense herbicide treatment increased fixation in August.Algal N2-ase activity, assayed by C2H2 reduction, continued throughout the night at a rate which averaged 33% of the midday value. Laboratory experiments indicate that dark fixation is very temperature sensitive and this value may represent a maximum. Algal crust in the field dried to 4.5–6.8% H2O content became active 3 1/2 h after rewetting and reached a steady state after 7 h which represented only 6–22% of that at the previous maximum suggesting that many cells had been killed.In a year with average rainfall algae on plots receiving 48 kg N ha–1 were estimated to fix 25–28 kg N ha–1 and plots without fertiliser 13–19 kg N ha–1. Algal fixation appeared to make a substantial contribution to the continuing fertility of unfertilised plots.  相似文献   

2.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

3.
Denitrification potentials of epilithic microbial populations were assessed using the acetylene inhibition method, in which acetylene is used to block the reduction of nitrous oxide (N2O) to nitrogen (N2). Samples of the epilithic community were incubated in filtered river water containing modified Bushnell-Haas salts, glycerol, and yeast extract—under aerobic (0.2 atm O2) and anaerobic (0.2 atm He) acetylene atmospheres. N2O was produced under both atmospheres only if exogenous nitrate of nitrite was added. Denitrification potentials were typically higher when nitrite was the added electron acceptor. The rates of denitrification were temperature-and carbon-dependent and the maximum rate, 8.53 g N2O–N per cm2 per day occurred at 23°C when nitrite was the electron acceptor.  相似文献   

4.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

5.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

6.
Summary The pattern of N2-ase activity in clay-loam soil of Nile Delta was determined. However, unamended soil showed somewhat low activity: an amount of 18–95 mg N2 fixed/kg soil/year was calculated. Addition of glucose greatly enhanced such activity and efficiencies of N2-fixation increased with decreasing carbon source concentration. Highest activities (800 n moles C2H4/gh–1) and efficiencies (18.06 mg N2/g glucose added) were reported in soil amended with 1% glucose, adjusted to 50% W.H.C. and incubated at 30°C. Enrichment of the soil with straw lead to a significant nitrogen gain particularly under water-logged conditions. During a short period of 16 days 5.8–9.3 mg N2 were fixed/g straw added at the latter conditions.  相似文献   

7.
Nitrogen fixation in a large shallow lake: rates and initiation conditions   总被引:3,自引:3,他引:0  
The fixation of molecular nitrogen (N2fix) by cyanobacteria in situ and in PO4-P enrichment experiments was investigated in large shallow Lake Võrtsjärv in 1998–2000. In this lake, N2fix started when TN/TP mass ratio was about 20, which is much higher than Redfield mass ratio 7. The rate of N2fix varied between 0.81 and 2.61 gN l–1 d–1 and maximum rate (2.61 gN l–1 d–1) was measured in 15.08.2000. In L. Võrtsjärv a lag period of a couple of weaks occurred between the set-up of favourable conditions for N2fix as the appearance of N2-fixing species and depletion of mineral nitrogen, and the real N2fix itself. However, if the favorable conditions for N2fix occurred in the lake, N2fix started after enrichment with PO4-P in mesocosms even then when no N2fix was detected in the lake. N2fix in mesocosms was also more intensive than in lake water. In our experiments PO4-P concentrations higher than 100 gP l–1started to inhibit N2fix.  相似文献   

8.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

9.
Dinitrogen fixation in the world's oceans   总被引:24,自引:1,他引:23  
Karl  D.  Michaels  A.  Bergman  B.  Capone  D.  Carpenter  E.  Letelier  R.  Lipschultz  F.  Paerl  H.  Sigman  D.  Stal  L. 《Biogeochemistry》2002,(1):47-98
The surface water of themarine environment has traditionally beenviewed as a nitrogen (N) limited habitat, andthis has guided the development of conceptualbiogeochemical models focusing largely on thereservoir of nitrate as the critical source ofN to sustain primary productivity. However,selected groups of Bacteria, includingcyanobacteria, and Archaea canutilize dinitrogen (N2) as an alternativeN source. In the marine environment, thesemicroorganisms can have profound effects on netcommunity production processes and can impactthe coupling of C-N-P cycles as well as the netoceanic sequestration of atmospheric carbondioxide. As one component of an integrated Nitrogen Transport and Transformations project, we have begun to re-assess ourunderstanding of (1) the biotic sources andrates of N2 fixation in the world'soceans, (2) the major controls on rates ofoceanic N2 fixation, (3) the significanceof this N2 fixation for the global carboncycle and (4) the role of human activities inthe alteration of oceanic N2 fixation. Preliminary results indicate that rates ofN2 fixation, especially in subtropical andtropical open ocean habitats, have a major rolein the global marine N budget. Iron (Fe)bioavailability appears to be an importantcontrol and is, therefore, critical inextrapolation to global rates of N2fixation. Anthropogenic perturbations mayalter N2 fixation in coastal environmentsthrough habitat destruction and eutrophication,and open ocean N2 fixation may be enhancedby warming and increased stratification of theupper water column. Global anthropogenic andclimatic changes may also affect N2fixation rates, for example by altering dustinputs (i.e. Fe) or by expansion ofsubtropical boundaries. Some recent estimatesof global ocean N2 fixation are in therange of 100–200 Tg N (1–2 × 1014 g N)yr–1, but have large uncertainties. Theseestimates are nearly an order of magnitudegreater than historical, pre-1980 estimates,but approach modern estimates of oceanicdenitrification.  相似文献   

10.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

11.
Denitrification was directly estimated in estuarine sediments of Waquoit Bay, Cape Cod, MA by detection of N2 increases above ambient in the water overlying sediment cores. Denitrification rates (–9 to 712 mol N2 m–2 h–1 ) were high compared to previous studies, but compared well with estimates of N loss from mass balance studies. The precision of the estimate depended on the N2/02 flux ratio. The N2/02 flux ratio was lower in Waquoit Bay than previously studied estuaries, and estuaries had lower N2/02 flux ratios than shelf sites. The contribution of temperature-driven solubility changes to estuarine fluxes was estimated by modeling sediment temperature variations and found to be potentially important (43 mol N2 m–2 h–1); however, control incubations indicate the temperature model overestimates solubility driven fluxes. The relatively low fluxes under anaerobic conditions and the low rate of N03 /N02 removal from the overlying water indicates coupled nitrification/denitrification produced the observed N2 fluxes.  相似文献   

12.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   

13.
Hansen  J.P.  Vinther  F.P. 《Plant and Soil》2001,237(2):257-266
Aiming at estimating the spatial variability in N2 fixation, and to evaluate the appropriateness of the 15N isotope dilution (ID) method and the natural15N abundance (NA) method in reflecting spatial variability under the influence of cattle grazing, the symbiotic N2 fixation in grass–white clover mixture was studied. At the Foulum site, where the ID method was used, differences in the climatic conditions between the two years of investigations caused a considerable difference in plant growth rates and proportion of clover. Consequently, the total N2 fixation in ungrazed reference plots was significantly less in 1998 than in 1997, being 5.9 and 12.5 g N m–2, respectively. In both years there was a wide range in concentration of inorganic N in the soil with coefficients of variance of approximately 60–190% for ammonium and 70–340% for nitrate. Significant negative correlations between pNdfa, determined by the ID method, and the log-transformed values of inorganic N and total N in grass were found. The NA method was applied on three nearby commercial dairy farms. They also showed high coefficients of variation. The coefficient of variance for NO3 -N ranged from 37 to 282% and for NH4 +-N from 29 to 237%. Average estimates of pNdfa values, which in the NA method were calculated using apparent B values ranging from –2.10 to –2.59, were generally lower (0.7–0.87) for these farms than for the Foulum site (0.89–0.95) using the ID method. For the NA method the 15N values, i.e. deviation in 15N concentration from atmospheric N2, ranged from –7.0 to 5.7 for the grass N, which in several cases was lower than for clover N. Due to this high variability of the 15N values, probably caused by deposition and plant assimilation of 15N depleted urinary N in the pastures, the NA method was marginal for accurate determination of pNdfa. Consequently no significant correlation between the pNdfa determined by this method, and the log-transformed values of inorganic N in soil or total N in grass were found.  相似文献   

14.
Jones  M. B.  Humphries  S. W. 《Hydrobiologia》2002,488(1-3):107-113
Fluxes of CO2 and H2O vapour were measured by eddy covariance from a stand of the C4 emergent sedge Cyperus papyrus (papyrus), which formed a fringing swamp on the north-west shore of Lake Naivasha, Kenya. The fluxes of CO2 and H2O vapour between the papyrus swamp and the atmosphere were large but variable, depending on the hydrology of the wetland system and the condition of the vegetation. These measurements, combined with simulation modelling of annual fluxes of CO2, show that papyrus swamps have the potential to sequester large amounts of the carbon (1.6 kg C m–2 y–1) when detritus accumulates under water in anaerobic conditions, but they are a net source of carbon release to the atmosphere (1.0 kg C m–2 y–1) when water levels fall to expose detritus and rhizomes to aerobic conditions. Evapotranspiration from papyrus swamps (E) was frequently lower than evaporation from open water surfaces (E o) and plant factors have a strong influence on the flux of water to the atmosphere. For the period of measurement E/Eo was 0.36.  相似文献   

15.
The impact of sustained low external concentrations of NO 3 (0, 10, 100 and 1000 mmol m–3) on plant growth and the relative acquisition of N through N2 fixation and NO 3 uptake by established, nodulated white clover (Trifolium repens L. cv. Blanca) was studied over 28 days in flowing solution culture. Nitrogen fixation was measured by N difference and 15N dilution methods. Plants supplied with NO 3 achieved higher relative growth rates (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\]=0.091 d–1) compared with control plants dependent on N2 fixation (0.073 d–1). Nitrate plants showed progressive increases in shoot: root d.w. ratios from 4 to 6.5–7.6 between days 0–28, compared with 5.1 on day 28 for control plants. Increases in both nodule d.w. and numbers per plant were inhibited after day seven at all concentrations of NO 3 . The severity of inhibition of N2 fixation increased with increasing NO 3 concentration and with time. The total amounts of N2 fixed per plant between days 0–7 after supplying 10, 100 and 1000 mmol m–3 NO 3 , respectively, were 37–39, 28–30 and 0–13%, of the total N acquired. Between days 7–28 the proportional contributions of N2 fixation to total N acquisition declined to 3, 0.5 and 0%, respectively, in these treatments. The corresponding mean specific rates of N2 fixation between days 0–7 were, respectively, 5.4, 3.2, and 2.0 mmol N d–1 g–1 nodule d.w., compared with 7.9 mmol N d–1 g–1 nodule d.w. for zero NO 3 plants. There was no evidence of a transitory increase in N2 fixation following the addition of NO 3 , even at the lowest supply concentration.  相似文献   

16.
A bacterium utilizing 2-chloro-4,6-diamino-s-triazine (CAAT) as sole nitrogen source was isolated under a N2-free atmosphere and identified as Klebsiella pneumoniae. Concomitant to CAAT degradation the protein content increased and chloride was released into the medium. Under air and a N2-atmosphere no reduction of CAAT degradation resulted, though this strain is able to fix molecular nitrogen, but the decomposition accelerated under anaerobic conditions. The degradation rate increased continuously with increasing CAAT concentration. A continuous CAAT degradation without CAAT accumulation was possible up to a influx rate of 4.8 mol·l–1 h–1 (dilution rate = 0.007 h–1). K. pneumoniae A2 was also able to utilize deethylsimazine (CEAT) and deethylatrazine (CIAT) as nitrogen source. Both under aerobic and anaerobic conditions CEAT could be degraded faster than CIAT. The degradation sequence of mixed s-triazines was cyanuric acid < CAAT < CEAT < CIAT, which was reflected by the degradation times of single compounds. Complete degradation was assumed for all investigated s-triazine derivatives.  相似文献   

17.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

18.
Summary The influence of seasonal variation on nitrogenase (N2-ase) activity of undisturbed soil-plant cores ofPanicum maximum var.trichoglume was measured using the C2H2 reduction assay. The largest N2-ase activity in the field, 14.7 g N ha−1 day−1, occurred in spring when soil moisture was high, soil temperature was low and nitrogenous fertiliser influence was at a minimum. The potential N2-ase activity of the cores, measured under controlled conditions, reached a maximum of 27.2 g N ha−1 day−1 and averaged 26.3 g N ha−1 day−1 over the 14 month sampling period. N2-ase activity was positively correlated (P=0.05) with field soil moisture and negatively correlated with field soil temperature (r=0.59 and −0.78 respectively). Multiple regression showed that 69% of the variation of N2-ase activity in the field was associated with the combined effects of soil moisture and soil temperature. Nitrogen fixing bacteria were isolated from the roots ofP. maximum and based upon morphology, biochemical tests and fluorescent antibody reaction, were found to be closely related toAzospirillum lipoferum.  相似文献   

19.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

20.
Cyanobacterial peri­phyton communities are a dominant feature of oligotrophic Everglades marshes, however, little is known regarding the biogeochemical aspects of this ecosystem component. This study was undertaken to investigate the potential for N2 fixation in the peri­phyton communities of a hydrologically-controlled portion of the northern Everglades marsh (Water Conservation Area 2A, WCA-2A). The objectives of this research were to characterize the temporal patterns of nutrient composition and N2 fixation of the natural WCA-2A peri­phyton communities and to compare fixation rates of peri­phyton with those of other ecosystem components in both natural and nutrient-impacted WCA-2A areas. In general, N2 fixation (measured by the acetylene reduction (AR) method) of natural WCA-2A peri­phyton was enhanced under light conditions showing a nitrogenase pattern characteristic of autotrophic cyanobacteria. Winter (November–March) rates of AR expressed per gram organic carbon (gOC) ranged from 147–240 nmol C2H2 g OC–1 h–1, while summer rates were elevated with an observed peak of 1148 nmol C2H2 g OC–1 h–1 in July 1998. This translates into an estimated yearly contribution of approximately 10 g N m–2 to an unimpacted WCA-2A slough ecosystem. Nitrogenase activity did not correlate seasonally with nutrients (Ca, Mg, Fe, N, P, Mn), but closely followed measured N stable isotopic ratios (15N) in floating peri­phyton. In oligotrophic marsh areas, AR (on a weight basis) decreased in the order floating peri­phyton > benthic peri­phyton floc > soil > water > detrital plant biomass, while highest AR rates were observed for detrital biomass in areas impacted by agricultural discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号