首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was to analyze the effects of forest management on the total biomass production (t ha-1a-1) and CO2 emissions (kg CO2 MWh-1) from use of energy biomass of Norway spruce and Scots pine grown on a medium fertile site. In this context, the growth of both species was simulated using an ecosystem model (SIMA) under different management regimes, including various thinning and fertilization treatments over rotation lengths from 40 to 120 years in different pre-commercial stand densities. A Life Cycle Analysis/Emission calculation tool was employed to assess the CO2 emissions per unit of energy from the use of biomass in energy production. Furthermore, the overall balance between the CO2 uptake and emission (carbon balance) was studied, and the carbon neutrality (CN) factor was calculated to assess environmental effects of the use of biomass in energy production; i.e., how much CO2 would be emitted per unit of energy when considering direct and indirect emissions from forest ecosystem and energy production. In general, the total annual biomass production for both species was highest when management with fertilization and high pre-commercial stand density (4000–6000 trees ha-1) was used. In the case of Norway spruce, the highest annual biomass production was obtained with a rotation length of 80–100 years, while for Scots pine a rotation length of 40–60 years gave the highest annual production. In general, the CO2 emissions decreased along with an increasing rotation length. The reduction was especially large if the rotation length was increased from 40 years to 60 years. Scots pine produced remarkably smaller net CO2 emissions per year (on average 29%) than Norway spruce over all different densities and rotation lengths. The value of the CN factor was highest if a rotation of 100 years was used for Norway spruce stands and a rotation of 120 years for Scots pine. The CO2 emission per energy unit was substantially less than that from the use of coal, which was used as reference to assess environmental effects of the use of biomass in energy production. The use of higher density of pre-commercial stand than that currently recommended in the Finnish forestry, together with timely thinning and fertilization, could increase the total biomass production, but also simultaneously decrease the net CO2 emissions from the use of energy wood.  相似文献   

2.
Two aspen (Populus tremuloides Michx.) clones, differing in O3 tolerance, were grown in a free-air CO2 enrichment (FACE) facility near Rhinelander, Wisconsin, and exposed to ambient air, elevated CO2, elevated O3 and elevated CO2+O3. Leaf instantaneous light-saturated photosynthesis (PS) and leaf areas (A) were measured for all leaves of the current terminal, upper (current year) and the current-year increment of lower (1-year-old) lateral branches. An average, representative branch was chosen from each branch class. In addition, the average photosynthetic rate was estimated for the short-shoot leaves. A summing approach was used to estimate potential whole-plant C gain. The results of this method indicated that treatment differences were more pronounced at the plant- than at the leaf- or branch-level, because minor effects within modules accrued in scaling to plant level. The whole-plant response in C gain was determined by the counteracting changes in PS and A. For example, in the O3-sensitive clone (259), inhibition of PS in elevated O3 (at both ambient and elevated CO2) was partially ameliorated by an increase in total A. For the O3-tolerant clone (216), on the other hand, stimulation of photosynthetic rates in elevated CO2 was nullified by decreased total A.  相似文献   

3.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

4.
Plant growth and adaptation to cold and freezing temperatures in a CO2-enriched atmosphere have received little attention despite the predicted effects of elevated CO2 on plant distribution and productivity. Norway spruce [Picea abies (L.) Karst.] seedlings from latitudinally distinct seed sources (66°N and 60°N) were grown for one simulated growth season under controlled conditions in an atmosphere enriched in CO2 (70 Pa) and at ambient CO2 (40 Pa), combined factorially with low (3.6 mM) or high (15.7 mM) concentrations of nitrogen fertilization. There was a clear difference between the two provenances in height growth, in the timing of bud set, and in freezing tolerance. Nitrogen fertilization increased height growth in both provenances, while CO2 enrichment stimulated height growth only in the southern provenance. We found no significant effects of elevated CO2 or nitrogen fertilization on the timing of bud set. During cold acclimation, freezing tolerance increased from –10°C to –35°C, and there was a marked increase in all soluble sugars except inositol. Elevated CO2 in combination with high nitrogen led to a slight increased freezing tolerance in both provenances during the early stages of cold acclimation. However, towards the end of cold acclimation, elevated CO2 and high nitrogen led to reduced freezing tolerance in the southern provenance, while elevated CO2 and low nitrogen reduced freezing tolerance in the northern provenance. These results suggest that CO2 enrichment influences the development of freezing tolerance, and that these responses differ with available nitrogen and between provenances.  相似文献   

5.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

6.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to ambient or elevated ozone (O3) (1.52ambient) and carbon dioxide (CO2) (590 µmol mol-1) concentrations during two growing seasons in open-top field chambers (OTCs). Five different treatments were applied in the chambers: filtered air, ambient air, elevated O3, elevated CO2, and elevated O3 and CO2 combined. Ambient plots outside the OTCs were also included, but the chamber ambient was used as a control in O3 and CO2 treatments due to a significant chamber effect. Increases in yellowing and chlorotic mottling of previous-year (C+1) needles and in the amount of cytoplasmic ribosomes and electron density of the chloroplast stroma in current-year (C) and C+1 needle mesophyll cells were observed in elevated O3 at both CO2 concentrations. Elevated O3 alone caused a non-significant 10.9% decrease in plant total dry mass and a significant decrease in manganese (Mn) content of C needles. CO2 enrichment caused a significant increase in needle cross-sectional width after the first year of exposure, and an accumulation of starch and slight curling and swelling of the chloroplast thylakoids in the mesophyll tissue of C needles after the second year of exposure. Calcium and Mn contents were increased and copper and nitrogen contents were decreased, significantly, in CO2-exposed needles. A non-significant 19.1% increase in plant total dry mass was measured in elevated CO2 alone, whereas a 14.8% reduction in total dry mass, together with a significant reduction in current-year main shoot length, was found in the combined treatment. Overall, in spite of decreases in O3-induced visible injuries by CO2, elevated CO2 levels were not able to counteract the impact of O3 in this experiment.  相似文献   

7.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

8.
We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 enrichment site in Rhinelander, Wisconsin. We added either 13C-labeled cellobiose or 13C-labeled N-acetylglucosamine to soils collected beneath ecologically distinct temperate trees exposed for 3 years to factorial CO2 (ambient and 200 µl l-1 above ambient) and O3 (ambient and 20 µl l-1 above ambient) treatments. For both labeled substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by 29% compared to ambient; elevated O3 eliminated this effect. Production of 13C-CO2 from soils beneath aspen (Populus tremuloides Michx.) and aspen-birch (Betula papyrifera Marsh.) was greater than that beneath aspen-maple (Acer saccharum Marsh.). Phospholipid fatty acid analyses (13C-PLFAs) indicated that the microbial community beneath plants exposed to elevated CO2 metabolized more 13C-cellobiose, compared to the microbial community beneath plants exposed to the ambient condition. Recovery of 13C in PLFAs was an order of magnitude greater for N-acetylglucosamine-amended soil compared to cellobiose-amended soil, indicating that substrate type influenced microbial metabolism and soil C cycling. We found that elevated CO2 increased fungal activity and microbial metabolism of cellobiose, and that microbial processes under early-successional aspen and birch species were more strongly affected by CO2 and O3 enrichment than those under late-successional maple.  相似文献   

9.
The phyllosphere microbial populations inhabiting the needles of three conifer species, Scots pine (Pinus sylvestris L.), Sitka spruce (Picea sitchensis L.) and Norway spruce (Picea abies (L.) Karst.), exposed to SO2 and O3, in an open-air fumigation experiment were analysed over a 3 year period using serial dilution after washing, direct plating and a fluorescein diacetate (FDA) enzyme assay. Total fungal populations ranged from 102 to 105 colonyforming units (CPU) g?1 fresh weight of needles. The dominant fungi isolated from needles varied with tree species and isolation technique; Aureobasidium pullulans (de Bary) Arnaud was most common on Scots pine and Norway spruce and white yeasts on Sitka spruce using the dilution plating method. However, direct plating of needle segments onto culture media indicated that Sclerophoma pythiophila (Corda) Hohnel was dominant on Scots pine and A. pullulans on Sitka and Norway spruce. Green needles of Sitka spruce were found to be endophytically colonized by Rhizosphaera kalkhoffii Bubak, but seldom by Lophodermium piceae (Fuckel) Hohn during extensive sampling in 1990. Statistical analyses revealed significant differences (P<0.05) between plots in the 3 year mean of the total fungal populations or the fungal biomass (FDA assay) on all three tree species. Differences between plots were also observed for a number of dominant component species. Data were also analysed for treatment effects. A significant effect of SO2 treatment was observed on the total fungal populations on Sitka spruce (P<0.05) which were reduced markedly by the low-SO2 treatment, while the O3 treatment caused a significant increase in total fungal numbers on Scots pine (P<0.05). The FDA activity on needles of both Scots pine and Sitka spruce was noticeably higher in the 03-only treatment plot, but the overall O3 effect was not significant. Treatment effects were also detected on the occurrence of component species. The serial dilution method revealed an SO2 effect (P<0.05) of a reduction in the occurrence of pink yeasts on Sitka spruce and an O3 effect (P<0.05) of an increase in the occurrence of S. pythiophila on Sitka spruce (P<0.01) but a decrease of Epicoccum nigrum Link and Cladosporium spp. on Scots pine. The direct-plating method revealed an SO2 effect of an increase in S. pythiophila on Norway spruce (P<0.05). Ozone treatment caused a significant increase in the isolation of a black strain of A. pullulans on Norway spruce (P<0.05). Endophytic colonization of Sitka spruce needles by R. kalkhoffii was found to be increased on two occasions by O3 exposure.  相似文献   

10.
This study aims to identify how climate change may influence total emissions of monoterpene and isoprene from boreal forest canopies. The whole of Finland is assumed to experience an annual mean temperature (T) increase of 4 °C and a precipitation increase of 10% by the year 2100. This will increase forest resources throughout the country. At the same time, the proportions of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in southern Finland (60°≤ latitude < 65°N) will be reduced from the current 40–50% to less than 10–20%, with increased dominance of birches (Betula pendula and Betula pubescens). In northern Finland (65°≤ latitude < 70°N), the proportions of Norway spruce and Scots pine will be balanced at a level of about 40% as the result of an increase in Norway spruce from the current 21% to 37% and a concurrent reduction in Scots pine from 63% to 40%. The proportion of birches is predicted to increase from the current 17% to 23%, but these will become the dominant species only on the most fertile sites. Total mean emissions of monoterpene by Scots pine will be reduced by 80% in southern Finland, but will increase by 62% in the north. Emissions from Norway spruce canopies will increase by 4% in the south but by 428% in the north, while those from birch canopies will increase by about 300% and 113%, respectively. Overall emissions of monoterpene over the whole country amount to about 950 kg km?2 y?1 under current temperature conditions and will increase by 17% to 1100 kg km?2 y?1 with elevated temperature and precipitation, mainly because of an increase at northern latitudes. Under current conditions, emissions of isoprene follow the spatial distribution of spruce canopies (the only isoprene‐emitting tree species that forms forests in Finland) with four times higher emissions in the south than in the north. The elevated temperature and the changes in the areal distribution of Norway spruce will result in increases in isoprene emissions of about 37% in southern Finland and 435% in northern Finland. Annual mean isoprene emissions from Norway spruce canopies over the whole country will increase by about 60% up to the year 2100.  相似文献   

11.
Post-storage gas exchange parameters like CO2 assimilation, stomatal conductance, transpiration, water use efficiency and intercellular CO2 concentrations, together with several chlorophyll a fluorescence parameters: Fo, Fv, Fv/Fm, Fm/Fo and Fv/Fo were examined in radiata pine (Pinus radiata D. Don) seedlings that were stored for 1, 8 or 15 days at 4° or 10°C with or without soil around the roots. Results were analysed in relation to post-storage water potential and electrolyte leakage in order to forecast their vitality (root growth potential) following cold storage, and post-planting survival potential under optimal conditions. During storage at 4° and 10°C, photosynthesis was reduced, being more pronounced in bare-root seedlings than in seedlings with soil around the roots. The depletion of CO2 assimilation seemed not to be solely a stomatal effect as effects on chloroplasts contributed to this photosynthetic inhibition. Thus, the fall in the ratios Fv/Fm, Fv/Fo and Fm/Fo indicated photochemical apparatus damage during storage. Photosynthetic rate was positively correlated with the root growth index and new root length showing that new root growth is dependent primarily on current photosynthesis. Pre-planting exposure of bare-root radiata pine seedlings to temperatures of 10°C for more than 24 h during transportation or storage is not recommended.  相似文献   

12.
The effects of NaCl were studied in 6-month-old jack pine (Pinus banksiana Lamb.) seedlings growing in solution culture under hypoxic (approximately 2 mg lу O2) and well-aerated (approximately 8 mg lу O2) conditions. The results showed that hypoxia led to further reduction of stomatal conductance (gs) in plants treated with 45 mM NaCl. This effect was likely due to a reduction in root hydraulic conductance by both stresses. When applied individually or together, neither 45 mM NaCl nor hypoxia affected cell membrane integrity of needles as measured by tissue electrolyte leakage. Hypoxia did not alter shoot Na+ and Clm concentrations in NaCl-treated plants. However, root Na+ concentrations were lower in NaCl-treated hypoxic plants, suggesting that hypoxia affected the ability of roots to store Na+. Hypoxia also induced root electrolyte leakage from NaCl-treated and control plants. The higher root Clm concentrations compared with Na+ and the positive correlation between root Clm concentrations and electrolyte leakage suggest that Clm played a major role in salt injury observed in jack pine seedlings. Roots of well-aerated plants treated for 1 week with NaCl contained almost two-fold higher concentration of total non-structural carbohydrates compared with plants from other experimental treatments and these concentrations decreased in subsequent weeks. We suggest that under prolonged hypoxic conditions, roots lose the ability to prevent Clm uptake resulting in the increase in root Clm concentration, which has damaging effects on root cell membranes.  相似文献   

13.
The effect of elevated atmospheric CO2 and temperature on resource allocation and secondary chemistry of white birch (Betula pendula Roth) under a non-limiting nutrient and water supply was investigated. Birch seedlings were grown in closed-top chambers exposed to ambient CO2 and temperature, elevated atmospheric CO2 (700 ppm), elevated temperature (2°C above ambient) and a combination of elevated CO2 and temperature for one growing season. Elevated CO2 significantly increased the total biomass of the seedlings. The combined effect of the elevated CO2 and temperature treatments further increased the total biomass, but not significantly. The content of nitrogen and water decreased, while some secondary compounds (such as condensed tannins and flavonol glycosides) increased in leaves subjected to CO2 enrichment. Elevated temperature increased the concentration of total flavone aglycones and decreased that of total HPLC-phenolics in the leaves, due to the decrease in individual flavonol glycosides, cinnamoylquinic acids and (+)-catechin. There were no significant interactive effects between CO2 and temperature in the phenolic concentrations of the leaves and in the stems, while the number of resin droplets in the top part of the stems showed significant interaction. This clearly implies that carbon allocation into secondary metabolites in the leaves and stems differ under enhanced CO2 and temperature, and the combined effect of CO2 and temperature on the herbivore resistance of birches, is lower than that of CO2 and temperature alone.  相似文献   

14.
The long-term responses of forests to atmospheric CO2 enrichment have been difficult to determine experimentally given the large scale and complex structure of their canopy. We have developed a CO2 exposure system that uses the free-air CO2 enrichment (FACE) approach but was designed for tall canopy trees. The system consists of a CO2-release system installed within the crown of adult trees using a 45-m tower crane, a CO2 monitoring system and an automated regulation system. Pure CO2 gas is released from a network of small tubes woven into the forest canopy (web-FACE), and CO2 is emitted from small laser-punched holes. The set point CO2 concentration ([CO2]) of 500 µmol mol-1 is controlled by a pulse-width modulation routine that adjusts the rate of CO2 injection as a function of measured [CO2] in the canopy. CO2 consumption for the enrichment of 14 tall canopy trees was about 2 tons per day over the whole growing season. The seasonal daytime mean CO2 concentration was 520 µmol mol-1. One-minute averages of CO2 measurements conducted at canopy height in the center of the CO2-enriched zone were within ᆨ% and ᆞ% of the target concentration for 76% and 47% of the exposure time, respectively. Despite the size of the canopy and the windy site conditions, performance values correspond to about 75% of that reported for conventional forest FACE with the added advantage of a much simpler and less intrusive infrastructure. Stable carbon isotope signals captured by 80 Bermuda grass (Cynodon dactylon) seedlings distributed within the canopy of treated and control tree districts showed a clearly delineated area, with some nearby individuals having been exposed to a gradient of [CO2], which is seen as added value. Time-integrated values of [CO2] derived from the C isotope composition of C. dactylon leaves indicated a mean (-SD) concentration of 513ᇓ µmol mol-1 in the web-FACE canopy area. In view of the size of the forest and the rough natural canopy, web-FACE is a most promising avenue towards natural forest experiments, which are greatly needed.  相似文献   

15.
The results of published and unpublished experiments investigating the impacts of elevated [CO2] on the chemistry of leaf litter and decomposition of plant tissues are summarized. The data do not support the hypothesis that changes in leaf litter chemistry often associated with growing plants under elevated [CO2] have an impact on decomposition processes. A meta-analysis of data from naturally senesced leaves in field experiments showed that the nitrogen (N) concentration in leaf litter was 7.1% lower in elevated [CO2] compared to that in ambient [CO2]. This statistically significant difference was: (1) usually not significant in individual experiments, (2) much less than that often observed in green leaves, and (3) less in leaves with an N concentration indicative of complete N resorption. Under ideal conditions, the efficiency with which N is resorbed during leaf senescence was found not to be altered by CO2 enrichment, but other environmental influences on resorption inevitably increase the variability in litter N concentration. Nevertheless, the small but consistent decline in leaf litter N concentration in many experiments, coupled with a 6.5% increase in lignin concentration, would be predicted to result in a slower decomposition rate in CO2-enriched litter. However, across the assembled data base, neither mass loss nor respiration rates from litter produced in elevated [CO2] showed any consistent pattern or differences from litter grown in ambient [CO2]. The effects of [CO2] on litter chemistry or decomposition were usually smallest under experimental conditions similar to natural field conditions, including open-field exposure, plants free-rooted in the ground, and complete senescence. It is concluded that any changes in decomposition rates resulting from exposure of plants to elevated [CO2] are small when compared to other potential impacts of elevated [CO2] on carbon and N cycling. Reasons for experimental differences are considered, and recommendations for the design and execution of decomposition experiments using materials from CO2-enrichment experiments are outlined.  相似文献   

16.
The carbohydrate metabolism of the needles of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) has been examined in trees that were exposed to SO2, and O3, in an open-air fumigation experiment located in the Liphook forest in southern England. Two-year-old seedlings were planted in 1985 in seven experimental plots. Five plots received fumigation treatments of SO2, O3 or a combination of these gases to give a 2 × 3 factorial design with one additional ambient plot Fumigation with SO2, occurred from May 1987 to December 1990 and O3, fumigation occurred from March to December 1988, May to December 1989 and February to December 1990. Five samples of needles for investigation of carbohydrate metabolism were taken between February and July 1989. The concentrations of soluble carbohydrates (including sucrose and hexoses) were greatly reduced in the needles taken from Scots pine growing in the treated plots, and were also reduced, but to a lesser extent, in the needles taken from Norway spruce. Little variation in the concentration of starch in the needles of either species was detected. The activities of the two final enzymes of sucrose synthesis, sucrose phosphate synthase and sucrose 6-phos-phate phosphatase, were greatly reduced in the needles of Scots pine and were also reduced, but to a lesser extent, in the needles of Norway spruce in the fumigated plots. These reductions could be correlated with decreases in rates of photosynthetic CO2 assimilation determined by independent groups of researchers working on the Liphook site.  相似文献   

17.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

18.
Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (Anet) and stomatal conductance (gs) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (VCmax) and the light-saturated rate of electron flow (Jmax) at elevated CO2. This resulted in greater Anet at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday Anet upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday Anet was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of Anet on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While gs did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of evaluating the effects of elevated CO2 at all life cycle stages to better understand the effects of elevated CO2 on whole-plant performance in natural ecosystems.  相似文献   

19.
Shoot and reproductive biomass of genotypes of Bromus erectus and Dactylis glomerata grown in competition at ambient and elevated CO2 were examined for 2 consecutive years in order to test whether genetic variation in those traits exists and whether it is maintained over time. At the species level, a positive CO2 response of shoot biomass of both species was only found in the first year of treatment. At the genotype level, no significant CO22genotype interaction was found at any single harvest either for vegetative or reproductive biomass of either species. Analysis over time, however, indicated that there is a potential for evolutionary adaptation only for D. glomerata: (1) repeated measures ANOVA detected a marginally significant CO22genotype2time interaction for shoot biomass, because the range of the genotypes CO2 response increased over time; (2) genotypes that displayed the highest response during the first year under elevated CO2 also showed the highest response the second year. Null (B. erectus) or weak (D. glomerata) selective potentials of elevated CO2 were detected in this experiment, but short time series could underestimate this potential with perennial species.  相似文献   

20.
Effects of doubled CO2 and O3 concentration on Soybean were studied in open-top chambers (OTC). Under doubled CO2 concentration, grain yield and biomass increased, the SOD activity, vitamin C (Vc) and carotenoid (Car) content also increased; Superoxide (O2 ?) generating rate decreased, relative conductivity and malondialdehyde (MDA) content significantly declined. But under doubled O3 concentration, the SOD activity, Vc and Car contents declined, resulting in imbalance of activated-oxygen production, enhanced O2 ? generating rate and accelerated process of lipid peroxidation and increase in MDA content and ion leakage of leaves. The final result was decreased grain yield and plant biomass. Interactive effects of doubled CO2 and O3 concentrations on soybean were mostly counteractive. However, the beneficial effects of concentration-doubled CO2 are more than compensate the negative effects imposed by doubled O3, and the latter in its turn partly counteracted the positive effects of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号