首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Three types of chiral stationary phase were used to achieve chromatographic resolution of enantiomers of rac-11-dihydrooracin (DHO), the principal metabolite of a potential cytostatic drug oracin. Chiralcel OD-R as a chiral stationary phase with mobile phase comprising acetonitrile (modifier) and sodium perchlorate (buffering component) proved to be the most suitable system. Chemometric optimisation based on the Box-Wilson central composite design was employed to find the optimum resolution. The optimum factor space was defined by three parameters: temperature, modifier concentration and buffer concentration. Newly designed chromatographic response functions based on a combination of resolution R(S) and retention time of the last component eluted t(RL) were employed to evaluate the resolution with regard to quality and quantity. Optimum values predicted from those models of response surfaces were in excellent agreement with the experimental results. The chromatographic resolution of DHO enantiomers is suitable for xenobiochemical studies on stereoselectivity and stereospecificity of biotransformation enzymes.  相似文献   

2.
A chiral capillary electrophoresis method has been developed for the quantification of 0.1% of the enantiomeric impurity (dextrocetirizine) in levocetirizine and determination of both in pharmaceuticals using sulfated-β-cyclodextrins (CDs) as chiral selector. Several parameters affecting the separation were studied such as the type and concentration of chiral selectors, buffer composition and pH, organic modifier, mixtures of two CDs in a dual system, voltage, and temperature. The optimal separation conditions were obtained using a 50 mM tetraborate buffer (pH 8.2) containing 1% (w/v) sulfated-β-CDs on a fused-silica capillary. Under these conditions, the resolution of two enantiomers was higher than 3. To validate the method, the stability of the solutions, robustness (two level half fraction factorial design for 5 factors using 19 experiments [2(n-1)+3]), precision, linearity (dextrocetirizine 0.25-2.5 μg/ml, R(2) = 0.9994, y = 0.0375x + 0.0008; levocetirizine 15-100 μg/ml, R(2) = 0.9996, y = 0.0213x + 0.0339), limit of detection (0.075 μg/ml, 0.03% m/m), limit of quantification (0.25 μg/ml, 0.1% m/m), accuracy (dextrocetirizine 84-109%, levocetirizine 97.3-103.1%), filter effect, and different CD batches were examined. The validated method was further applied to bulk drug and tablets of levocetirizine.  相似文献   

3.
A chiral alkylglucoside surfactant, namely n-octyl-β-D-maltopyranoside (OM), was evaluated in the enantiomeric separation of phenoxy acid herbicides. The enantiomeric resolution of the phenoxy acid herbicides could be manipulated readily by adjusting the surfactant concentration, ionic strength, pH, the percent organic modifier and separation temperature. The optimum surfactant concentration needed for maximum enantiomeric resolution varied among the different analytes, and was an inverse function of the hydrophobicity of the phenoxy acid herbicides with the most hydrophobic solute requiring less surfactant concentration for attaining a baseline enantiomeric resolution. Due to the ionic nature of the phenoxy acid herbicides, increasing the pH of the running electrolyte increased the degree of ionization of the acidic herbicides thus decreasing their association with the chiral micelles and in turn their enantiomeric resolution. Increasing the ionic strength of the running electrolyte seems to enhance both the solubilization of the solute in the micelle and the chiral interaction of the solute with the micelle with a net increase in enantiomeric resolution. The percent of added methanol had a varying effect on the resolution of the various enantiomers in the sense that it enhanced the enantiomeric resolution for the most hydrophobic solutes while it decreased the enantiomeric resolution for the weakly hydrophobic ones. Thermostating the capillary column at subambient temperature improved enantiomeric resolution. © 1996 Wiley-Liss, Inc.  相似文献   

4.
High-performance capillary electrophoresis (HPCE) and micellar electrokinetic capillary chromatography (MECC) were applied to the resolution of racemic nonsteroidal antiaromatase drugs and intermediates. Successful results were obtained in both modes using α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), or 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD) as chiral selectors. Depending on the structure of the solute, one of the cyclodextrins was generally better suited for resolution of the racemate. The basic solutes were analyzed under HPCE conditions, whereas the nonionizable compounds such as glutethimide (Doriden®) were analyzed in MECC mode. For the azole-type antiaromatase Fadrozole, both HPCE and MECC modes could be used to achieve the separation of the enantiomers. The influence of experimental factors such as pH, the presence of organic modifier, temperature, the micelle concentration, and the concentration of the chiral selector is also discussed on the basis of the results obtained with some chiral barbiturates. The possibility of analyzing the enantiomers directly in plasma samples was also demonstrated. © 1993 Wiley-Liss, Inc.  相似文献   

5.
A direct chiral chromatographic reversed phase method for the determination of the enantiomers of felodipine is described. The influence of charged and uncharged modifiers as well as the effect of the mobile phase pH on the enantiomeric resolution is discussed. A high mobile phase pH and the addition of 2-propanol as organic modifier gave the highest separation factor (α = 1.3). The high mobile phase pH (pH = 7.6) is outside the recommended pH limit of silica based columns but was necessary to achieve baseline resolution of (R)- and (S)-felodipine. Improvement of column efficiency by increasing column temperature was utilized for optimization of the enantiomeric resolution (Rs = 1.7). The enantiomers of felodipine and three related compounds were separated within 15 min. The enantiomeric purity of (R)- and (S)-felodipine in injections and (R)-felodipine in bulk substance was higher than 99.5% and no racemization was observed after storage at accelerated conditions. A poor Chiral-AGP® column used for a long period was restored using a simple wash step together with repacking the top of the chromatographic column. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Enantiomeric separation of a variety of drugs and related compounds was achieved on an (S)-naphthylethylcarbamoylated-β-cyclodextrin (S-NEC-CD) chiral stationary phase (CSP) using sub- and supercritical fluid chromatography (SFC). Compounds previously resolved on native or derivatized cyclodextrin CSPs in liquid chromatography (LC) using reversed phase or polar organic mobile phase modes could be resolved in SFC using a simple carbon dioxide/methanol eluent. Resolution of cromakalim, which is not possible on the S-NEC-CD column in LC, was readily accomplished in SFC. The importance of modifier, temperature, and pressure was assessed in relation to retention, selectivity, and resolution. The nature of the modifier and the modifier concentration were found to be crucial parameters. © 1996 Wiley-Liss, Inc. Contribution of the National Institute of Standards and Technology. Not subject to copyright.  相似文献   

7.
Capillary zone electrophoresis was optimized to quantitatively determine codeine and paracetamol via central composite factorial design. Critical parameters (concentration, buffer, pH, voltage) assessed effects on resolution, analysis time and efficiencies. Optimum separation conditions were achieved using phosphate buffer 20 mM (pH 6.8) and voltage (15 kV). The optimized procedure easily determined codeine and paracetamol with separation in less than 3 min. Calibration curves (R > 0.999) were prepared, with LODs of 13.5 and 340 ng mL(-1) for codeine and paracetamol, respectively, and a good R.S.D.% (<3%). This method was applied to determine codeine and paracetamol in pharmaceutical formulations; recoveries coincided with stated contents.  相似文献   

8.
The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (α) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About 30% of the separation factor was reduced after 80 days of repeated use.  相似文献   

9.
A new covalently-bonded, silica-based stationary phase, using as the chiral selector the 1-(3-aminopropyl) derivative of (+)-(5R,8S,10R)-terguride, has been developed to resolve optically active isomers by HPLC. Good resolution of structurally related racemic ergot alkaloids were obtained using water-methanol mixtures as the eluent. Analysis of the influence of the type and concentration of the organic modifier, and the pH of the buffer in the mobile phase allowed the enantioseparation of these compounds to be optimized. Determination of the optical purity of a lisuride-containig drug is reported. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
《Chirality》2017,29(10):579-588
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching‐band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is “How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching‐band resolution?” To answer this question, tramadol and propranolol were separated on cellulose 3,5‐dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n‐hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase.  相似文献   

12.
The quantitative effects of temperature, pH and time of fermentation were investigated on simultaneous saccharification and fermentation (SSF) of ethanol from sago starch with glucoamylase (AMG) and Zymomonas mobilis ZM4 using a Box–Wilson central composite design protocol. The SSF process was studied using free enzyme and free cells and it was found that with sago starch, maximum ethanol concentration of 70.68 g/l was obtained using a starch concentration of 140 g/l, which represents an ethanol yield of 97.08%. The optimum conditions for the above yield were found to be a temperature of 36.74 °C, pH of 5.02 and time of fermentation of 17 h. Thus by using the central composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.  相似文献   

13.
The optimization of parameters for the effective leaching of thermostable pullulanase from Clostridium thermosulfurogenes SV2-fermented bran was carried out using response surface methodology based on the central composite rotatable design. The design contains a total of 54 experimental trials with the first 32 organized in a fractional factorial design and experimental trials from 33-40 and 51-54 involving the replication of the central points. The design was employed by selecting solvent to wheat bran ratio (S/BB), process temperature, solvent pH, shaking (RPM) and contact time (h) as model factors. Among the five independent variables studied, the S/BB, solvent pH and shaking were found to be significant. S/BB ratio of 9.0, 200 RPM shaking and solvent pH 6.0 were identified as optimum for the leaching of thermostable pullulanase from the strain SV2-fermented bran.  相似文献   

14.
A simple and precise method for chiral separation of tryptophan enantiomers using high performance liquid chromatography with aligand exchange mobile phase was developed. Chiral separation was performed on a conventional C18 column, using a mobile phase that consisted of a water-methanol solution (88∶12, v/v) containing 10 mmol/Ll-leucine and 5 mmol/L copper sulfate as a chiral ligand additive at a flow rate of 1.0 mL/min. This method allowed baseline separation of two enantiomers with a resolution of 1.84 in less than 30 min. The effect of various conditions, including concentration, type of ligand, organic modifier, pH, flow rate, and temperature, on enantioseparation were evaluated and chiral recognition mechanisms were investigated. Thermodynamic data (ΔΔH and ΔΔS) obtained by van't Hoff plots revealed that enantioseparation is an enthalpy-controlled process.  相似文献   

15.
The central composite rotable design (CCRD) was used to determine optimal conditions for fibrinolytic enzyme production by Bacillus subtilis DC-2 in poly-ethylene glycol 4000 (PEG 4000) and sodium sulfate (Na(2)SO(4)) aqueous two-phase system (ATPS). PEG 4000 and Na(2)SO(4) concentration, fermentation time and temperature, and pH were selected as variables to evaluate the fibrinolytic activity in PEG phase. Using response surface methodology (RSM), a second-order polynomial equation was obtained by multiple regression analysis. The predicted maximal fibrinolytic activity in PEG phase was 1241.02 IU/ml with 9.05% PEG 4000 concentration, 5.06% Na(2)SO(4) concentration, 118.77 h fermentation time, 37.57 degrees C fermentation temperature and pH 6.52. The validity of the response model was verified by a good agreement between predicted and experimental results. The fibrinolytic activity obtained from experimental results in PEG phase (1223.61 IU/ml) was higher than that produced in homogeneous fermentation (1165.58 IU/ml).  相似文献   

16.
Modified resolution and overall separation factors used to quantify the separation of complex chromatography systems are described. These factors were proven to be applicable to the optimization of amino acid resolution in reverse-phase (RP) HPLC chromatograms. To optimize precolumn derivatization with phenylisothiocyanate, a 25-1 fractional factorial design in triplicate was employed. The five independent variables for optimizing the overall separation factor were triethylamine content of the aqueous buffer, pH of the aqueous buffer, separation temperature, methanol/acetonitrile concentration ratio in the organic eluant, and mobile phase flow rate. Of these, triethylamine concentration and methanol/acetonitrile concentration ratio were the most important. The methodology captured the interaction between variables. Temperature appeared in the interaction terms; consequently, it was included in the hierarchic model. The preliminary model based on the factorial experiments was not able to explain the response curvature in the design space; therefore, a central composite design was used to provide a quadratic model. Constrained nonlinear programming was used for optimization purposes. The quadratic model predicted the optimal levels of the variables. In this study, the best levels of the five independent variables that provide the maximum modified resolution for each pair of consecutive amino acids appearing in the chromatograph were determined. These results are of utmost importance for accurate analysis of a subset of amino acids.  相似文献   

17.
Abstract

Aqueous two-phase extraction of wedelolactone from Eclipta alba was studied using the polymer-salt system. The system consisted of polyethylene glycol (PEG) as a top phase (polymer) and sodium citrate as a bottom phase (salt). Process parameters such as PEG concentration, PEG molecular weight, salt concentration, and pH have been optimized using response surface methodology (RSM) with the help of central composite design (CCD). The optimized conditions for aqueous two-phase system (ATPS), in the case of one factor at a time approach, were found as PEG 6000, PEG concentration 18% (w/v), salt concentration 16% (w/v), and pH 7; with maximum extraction yield of 6.52?mg/g. While, RSM studies showed maximum extraction yield of 6.73?mg/g with the optimized parameters as PEG 6000, PEG concentration 18% (w/v), salt concentration 17.96% (w/v), and pH 7. ATPS was found to give a 1.3 fold increase in the extraction yield of wedelolactone as compared to other conventional extraction methods.  相似文献   

18.
Based on a five level central composite design (CCD) involving the variables substrate concentration (C), pH (P), incubation temperature (T) and fermentation time (H), a response surface methodology (RSM) for the production of ethanol from pretreated sugarcane bagasse by cellulase and yeast Kluyveromyces fragilis was standardized. The design contains a total of 31 experimental trials in which the first 24 organized in a factorial design and from 25 to 31 involving the replications of the central points. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation. Maximum ethanol concentration (32.6 g/l) was obtained from 180 g/l pretreated sugarcane bagasse at the optimized process conditions (temperature 35°C, pH 5.5) in 72 h aerobic batch fermentation. Various kinetic models such as logistic model, logistic incorporated leudeking piret model and logistic incorporated modified leudeking piret model have been evaluated and the constants were predicted.  相似文献   

19.
Carboxymethyl-β-cyclodextrins (CM-β-CDs) with five kinds of degrees of substitution were synthesized and characterized. Analytical enantioseparation of six basic drugs containing N-alkyl groups, including pheniramine, chlorpheniramine, labetalol, propranolol, venlafaxine, and trans-paroxol, was achieved by reversed-phase high-performance liquid chromatography (RP-HPLC) using the synthesized CM-β-CD as chiral mobile phase additives. Key influence factors were optimized, including organic modifier, pH value, CM-β-CD with different degrees of substitution, and concentration of CM-β-CD. The mobile phase was composed of methanol and 10 mmol L−1 of phosphate buffer pH 4.0 containing 10 mmol L−1 of CM-β-CD. Peak resolution for six racemic drugs was gradually increased with an increasing degree of substitution of the synthesized CM-β-CD. The stoichiometric ratio and binding constants for the inclusion complex formed by CM-β-CD and enantiomer were determined, which showed that the stoichiometric ratio for each inclusion complex was 1:1.  相似文献   

20.
Citalopram (CIT) is a frequently used modern antidepressant that inhibits selectively serotonin reuptake in the brain. It has a chiral center in its structure and is used in therapy as both racemic mixture and pure enantiomer as its pharmacological effect is almost entirely associated with S-CIT. The aim of this study was the development of a simple and rapid capillary electrophoresis (CE) method for the separation and quantification of CIT enantiomers. To establish the optimum chiral selector, several native and derivatized, neutral, and ionized cyclodextrins (CDs) were examined at different pH levels. An experimental design strategy was adopted for method optimization; a fractional factorial design was applied for screening purposes to identify significant experimental factors followed by a face-centered central composite design used for optimization purposes. Computational modeling was used to obtain information on the interaction energy and the geometry of the complexes to aid in the understanding of chiral separation mechanism. The best results were obtained when using a 25-mM phosphate buffer at pH 7.0, 3-mM CM-β-CD as chiral selector, 17.5°C temperature, 15-kV voltage, and 50 mbar/s hydrodynamic injection. The separation time was fast, below 3 min, and the migration order was S-CIT followed by R-CIT. The analytical performance of the method was verified in terms of precision, linearity, accuracy, sensibility, and robustness, and the method was applied for the determination of CIT enantiomers from pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号