首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polymerase template recognition, we found that initiation from the 3' end of a template requires one nucleotide 3' of the initiation nucleotide. The addition of a nontemplated nucleotide at the 3' end of minus-strand BMV RNAs led to initiation of genomic plus-strand RNA in vitro. Genomic plus-strand initiation was specific since cucumber mosaic virus minus-strand RNA templates were unable to direct efficient synthesis under the same conditions. In addition, mutational analysis of the minus-strand template revealed that the -1 nontemplated nucleotide, along with the +1 cytidylate and +2 adenylate, is important for RNA-dependent RNA polymerase interaction. Furthermore, genomic plus-strand RNA synthesis is affected by sequences 5' of the initiation site.  相似文献   

2.
Hema M  Gopinath K  Kao C 《Journal of virology》2005,79(3):1417-1427
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined.  相似文献   

3.
4.
5.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

6.
The NS5B protein of the classical swine fever virus (CSFV) is the RNA-dependent RNA polymerase of the virus and is able to catalyze the viral genome replication. The 3' untranslated region is most likely involved in regulation of the Pestivirus genome replication. However, little is known about the interaction between the CSFV NS5B protein and the viral genome. We used different RNA templates derived from the plus-strand viral genome, or the minus-strand viral genome and the CSFV NS5B protein obtained from the Escherichia coli expression system to address this problem. We first showed that the viral NS5B protein formed a complex with the plus-strand genome through the genomic 3' UTR and that the NS5B protein was also able to bind the minus-strand 3' UTR. Moreover, it was found that viral NS5B protein bound the minus-strand 3' UTR more efficiently than the plus-strand 3' UTR. Further, we observed that the plus-strand 3' UTR with deletion of CCCGG or 21 continuous nucleotides at its 3' terminal had no binding activity and also lost the activity for initiation of minus-strand RNA synthesis, which similarly occurred in the minus-strand 3' UTR with CATATGCTC or the 21 nucleotide fragment deleted from the 3' terminal. Therefore, it is indicated that the 3' CCCGG sequence of the plus-strand 3' UTR, and the 3' CATATGCTC fragment of the minus-strand are essential to in vitro synthesis of the minus-strand RNA and the plus-strand RNA, respectively. The same conclusion is also appropriate for the 3' 21 nucleotide terminal site of both the 3' UTRs.  相似文献   

7.
8.
Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [ Sivakumaran, K. and Kao, C.C. (1999) J. Virol. 64 , 6415–6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.  相似文献   

9.
Cheng JH  Peng CW  Hsu YH  Tsai CH 《Journal of virology》2002,76(12):6114-6120
The 3' terminus of the bamboo mosaic potexvirus (BaMV) contains a poly(A) tail, the 5' portion of which participates in the formation of an RNA pseudoknot required for BaMV RNA replication. Recombinant RNA-dependent RNA polymerase (RdRp) of BaMV binds to the pseudoknot poly(A) tail in gel mobility shift assays (C.-Y. Huang, Y.-L. Huang, M. Meng, Y.-H. Hsu, and C.-H. Tsai, J. Virol. 75:2818-2824, 2001). Approximately 20 nucleotides of the poly(A) tail adjacent to the 3' untranslated region (UTR) are protected from diethylpyrocarbonate modification, suggesting that this region may be used to initiate minus-strand RNA synthesis. The 5' terminus of the minus-strand RNA synthesized by the RdRp in vitro was examined using 5' rapid amplification of cDNA ends (RACE) and DNA sequencing. Minus-strand RNA synthesis was found to initiate from several positions within the poly(A) tail, with the highest frequency of initiation being from the 7th to the 10th adenylates counted from the 5'-most adenylate of the poly(A) tail. Sequence analyses of BaMV progeny RNAs recovered from Nicotiana benthamiana protoplasts which were inoculated with mutants containing a mutation at the 1st, 4th, 7th, or 16th position of the poly(A) tail suggested the existence of variable initiation sites, similar to those found in 5' RACE experiments. We deduce that the initiation site for minus-strand RNA synthesis is not fixed at one position but resides opposite one of the 15 adenylates of the poly(A) tail immediately downstream of the 3' UTR of BaMV genomic RNA.  相似文献   

10.
A 3'-terminal, 77-nucleotide sequence of Bamboo mosaic virus (BaMV) minus-strand RNA (Ba-77), comprising a 5' stem-loop, a spacer and a 3'-CUUUU sequence, can be used to initiate plus-strand RNA synthesis in vitro . To understand the mechanism of plus-strand RNA synthesis, mutations were introduced in the 5' untranslated region of BaMV RNA, resulting in changes at the 3' end of minus-strand RNA. The results showed that at least three uridylate residues in 3'-CUUUU are required and the changes at the penultimate U are deleterious to viral accumulation in Nicotiana benthamiana protoplasts. Results from UV-crosslinking and in vitro RNA-dependent RNA polymerase competition assays suggested that the replicase preferentially interacts with the stem structure of Ba-77. Finally, CMV/83 + UUUUC, a heterologus RNA, which possesses about 80 nucleotides containing the 3'-CUUUU pentamer terminus, and which folds into a secondary structure similar to that of Ba-77, could be used as template for RNA production by the BaMV replicase complex in vitro .  相似文献   

11.
12.
13.
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.  相似文献   

14.
15.
M Ishikawa  T Meshi  T Ohno    Y Okada 《Journal of virology》1991,65(2):861-868
The time course of accumulation of viral plus-strand RNAs (genomic RNA and subgenomic mRNA for the coat protein) and minus-strand RNA in tobacco protoplasts synchronously infected with tobacco mosaic virus (TMV) RNA was examined. In protoplasts infected with the wild-type TMV L RNA, the plus and minus strands accumulated differently not only in quantity but also in the outline of kinetics. The time courses of accumulation of the genomic RNA and coat protein mRNA were similar: they became detectable at 2 or 4 h postinoculation (p.i.), and their accumulation increased until 14 to 18 h p.i. The accumulation rate reached the maximum at about 4 h p.i. and then gradually decreased. In contrast, accumulation of the minus-strand RNA ceased at 6 to 8 h p.i., at which time the plus-strand accumulation was already about 100 times greater and still continued vigorously. This specific halt of minus-strand accumulation was not caused exclusively by encapsidation of the genomic RNA, because a similar halt was observed upon infection with a deletion mutant that lacks the 30K and coat protein genes. Upon infection with a mutant that could not produce the 130K protein (one of the two proteins that are thought to be involved in viral RNA replication), the accumulation levels of both plus and minus strands were lower than that of the parental wild-type virus. Given these observations, possible mechanisms of TMV replication are discussed.  相似文献   

16.
17.
18.
19.
Emara MM  Liu H  Davis WG  Brinton MA 《Journal of virology》2008,82(21):10657-10670
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.  相似文献   

20.
Promoter regions required for minus-strand and subgenomic RNA synthesis have been mapped for several plus-strand RNA viruses. In general, the two types of promoters do not share structural features even though they are recognized by the same viral polymerase. The minus-strand promoter of Alfalfa mosaic virus (AMV), a plant virus of the family Bromoviridae, consists of a triloop hairpin (hpE) which is attached to a 3' tRNA-like structure (TLS). In contrast, the AMV subgenomic promoter consists of a single triloop hairpin that bears no sequence homology with hpE. Here we show that hpE, when detached from its TLS, can function as a subgenomic promoter in vitro and can replace the authentic subgenomic promoter in the live virus. Thus, the AMV subgenomic and minus-strand promoters are basically the same, but the minus-strand promoter is linked to a 3' TLS to force the polymerase to initiate at the very 3'end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号