首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The feeding biology of Enchytraeus crypticus and other enchytraeids is poorly understood as is their effect on nematophagous fungi. Because enchytraeids had been associated with nematophagous fungi in the field and had suppressed these fungi in soil microcosms, we tested the hypothesis that exclusion of enchytraeids, largely E. crypticus, would improve establishment of certain nematophagous fungi in field plots. The fungi, Hirsutella rhossiliensis and Monacrosporium gephyropagum, are being studied as potential control agents of plant-parasitic nematodes and were formulated as hyphae in alginate pellets. The pellets were mixed into soil without enchytraeids and placed in cages (PVC pipe, 80 cm3 volume) with fine (20 μm) or coarse (480 μm) mesh; cages were buried 15 cm deep in field plots and then recovered after 6–52 days. When fine mesh was used, enchytraeids were excluded and the fungi increased to large numbers. When coarse mesh was used, enchytraeid numbers in cages increased rapidly and the fungi did poorly. Although mesh also affected other potential fungivores, including collembolans and large dorylaimid nematodes, we suspect that enchytraeids were more important because large numbers were consistently found in cages with coarse mesh soon after the cages were placed in soil. Organisms smaller than enchytraeids (bacteria, fungi, and protozoa) also appeared to be important because the fungi did better in heat-treated soil than in non-heat-treated soil, regardless of mesh size. The rapid increase in enchytraeid numbers in cages with hyphal pellets and coarse mesh was probably caused by movement of enchytraeids toward the pellets with hyphae: increase in enchytraeid numbers was minimal when movement into cages was blocked (or when cages contained pellets without hyphae). Overall, the data were consistent with the hypothesis that enchytraeids, or other meso- or macrofauna, contributed to suppression of nematophagous fungi in our field plots. Received: 22 April 1997 / Accepted: 16 June 1997  相似文献   

2.
The fungus Hirsutella rhossiliensis is an obligate pathogen with a broad host range among nematodes. Microbivorous nematodes are abundant around plant roots and may serve as hosts for the fungus. Our objective was to determine the influence of the bacterial-feeding nematode Teratorhabditis dentifera on the abundance of H. rhossiliensis. Experiments were conducted in a growth chamber with pots containing pasteurized soil, the fungus, and potato plants. The abundance of infectious conidia was compared in pots with and without T. dentifera after 50 or 70 days. The nematode reached high densities (10-40/cm3 soil) but had no effect on the abundance of conidia. Many individuals were dauer juveniles, a stage that acquired conidia but did not become infected. To test whether this life stage could deplete the pool of conidia in soil, different proportions of dauer juveniles with (resistant) and without (susceptible) a sheath were added to H. rhossiliensis-infested soil. The number of conidia in the soil decreased with an increasing proportion of resistant nematodes. Different stages of T. dentifera appear to have opposing effects on H. rhossiliensis; while adults and regular juveniles acquire conidia, become infected, and produce new infectious conidia, dauer juveniles can deplete the supply of conidia.  相似文献   

3.
Penetration of cabbage roots by Heterodera schachtii was suppressed 50-77% in loamy sand naturally infested with the nematophagous fungus Hirsutella rhossiliensis. When Heterodera schachtii was incubated in the suppressive soil without plants for 2 days, 40-63% of the juveniles had Hirsutella rhossiliensis spores adhering to their cuticles. Of those with spores, 82-92% were infected. Infected nematodes were killed and filled with hyphae within 2-3 days. Addition of KCl to soil did not increase infection of Heterodera schachtii by Hirsutella rhossiliensis. The percentage of infection was lower when nematodes were touched to two spores and incubated in KCl solution than when nematodes naturally acquired two spores in soil.  相似文献   

4.
The endoparasitic fungus Hirsutella rhossiliensis and the nematode-trapping fungi Monacrosporium cionopagum and M. ellipsosporum were formulated as hyphae in alginate pellets. In a soil microcosm experiment, dried pellets of all three fungi decreased the invasion of cabbage seedlings by the root-knot nematode Meloidogyne javanica when juvenile nematodes were placed 2 cm from roots; M. cionopagum was more effective than the other two fungi, reducing nematode invasion by 40-95% with 0.24-0.94 pellets cm - 3 of soil. In a field microplot experiment, in which neither H. rhossiliensis nor M. ellipsosporum suppressed nematodes, 0.5 pellets of M. cionopagum cm - 3 of soil suppressed M. javanica invasion of tomato seedlings by 73%. In a second microplot experiment with only M. cionopagum , again at 0.5 pellets cm - 3 of soil, the fungus suppressed the invasion of tomato seedlings whether the pellets were added 0, 5 or 14 days before planting; the population density of M. cionopagum increased to nearly 3000 propagules g - 1 of soil by day 8 and then declined to less than 300 by day 22. Enchytraeid worms were observed in and around damaged and apparently destroyed pellets in both microplot experiments. Whether enchytraeids consumed the fungi or otherwise affected biological control requires additional research.  相似文献   

5.
Infectivity of second‐stage juvenile (J2) populations of Heterodera schachtii was assayed with radish.The numbers of J2 in three‐day‐old seedlings were proportional to the numbers of J2 in two differently textured soils.In a microplot trial with a known H.schachtii‐supprcssivc soil, half of the plots contained untreated suppressive soil, the other half contained the same soil, but methyl iodide‐fumigated and therefore conducive.Both soils were infested with cysts introducing the equivalents of 0, 30, 60 or 120 H.schachtii eggs g‐1 soil, kept moist for 2 months, and then planted to Swiss chard.The numbers of J2 in radish roots were proportional to the numbers of H.schachtii eggs introduced into the microplots, at a low level of detection in suppressive soil and at a high level in conducive soil.Growth of Swiss chard was not different at increasing infestation levels in suppressive soil, but growth was reduced in conducive soil proportionally to increasing nematode infestation level.  相似文献   

6.
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

7.
Hirsutella rhossiliensis, a nematophagous fungus, has shown potential in biocontrol of plant-parasitic nematodes. Monitoring the population dynamics of a biocontrol agent in soil requires comprehensive techniques and is essential to understand how it works. Bioassay based on the fungal parasitism on the juveniles of soybean cyst nematode, Heterodera glycines, can be used to evaluate the activity of the fungus but fails to quantify fungal biomass in soil. A real-time polymerase chain reaction (PCR) assay was developed to quantify the fungal population density in soil. The assay detected as little as 100 fg of fungal genomic DNA and 40 conidia g−1 soil, respectively. The parasitism bioassay and the real-time PCR assay were carried out to investigate the presence, abundance and activity of H. rhossiliensis in soil after application of different inoculum levels. Both of the percentage of assay nematodes parasitized by H. rhossiliensis based on the parasitism bioassay and the DNA yield of the fungus quantified by real-time PCR increased significantly with the increase of the inoculum levels. The DNA yield of the fungus was positively correlated with the percentage of assay nematodes parasitized by H. rhossiliensis. The combination of the two is useful for monitoring fungal biomass and activity in soil.  相似文献   

8.
【目的】鉴定洛斯里被毛孢OWVT-1菌株的线粒体基因组,验证公布的USA-87-5菌株线粒体基因组中的错误,对洛斯里被毛孢正确的线粒体基因组序列进行注释并开展不同被毛孢物种间的比较线粒体基因组学分析。【方法】借助DNA高通量测序数据并通过必要的Sanger测序组装OWVT-1的线粒体基因组。通过PCR验证OWVT-1与公布的USA-87-5线粒体基因组序列差异的真实性。利用多种生物信息方法分析和注释洛斯里被毛孢的线粒体基因组。【结果】公布的洛斯里被毛孢USA-87-5菌株的线粒体基因组存在几处序列错误,包括3处长片段的插入缺失和多处短片段的插入缺失。实际上,洛斯里被毛孢USA-87-5与OWVT-1菌株的线粒体基因组序列完全相同。该菌的线粒体基因组全长62949 bp,在7个基因中共插入13个内含子,部分内含子和基因间区显现出序列退化的特征。洛斯里被毛孢、明尼苏达被毛孢、线虫被毛孢的线粒体基因组具有较强的共线性关系。除一些独立的ORF外,核心蛋白编码基因、rRNA基因和tRNA基因的排列顺序非常保守。基因间区的长短是影响3种被毛孢线粒体基因组大小最主要的因素。【结论】公布的洛斯里被毛孢USA-87-5菌株线粒体基因组中存在序列错误。本文新报道了OWVT-1菌株的线粒体基因组,并进行注释和比较线粒体基因组学分析。  相似文献   

9.
Ectomycorrhizas were synthesized in pots and growth pouches betweenQuercus serrata, Q. acutissima, and two ectomycorrhizal fungi,Pisolithus tinctorius andHebeloma cylindrosporum. Root morphology and the structure of the mantle and Hartig net were compared using light, fluorescence, scanning and transmission electron microscopy.P. tinctorius initially colonized root cap cells, and eventually produced a highly branched lateral root system with a complete mantle, whereasH. cylindrosporum promoted root elongation with few hyphae on the root apex surface indicating that interaction between roots differs with fungal species. Hartig net structure and hyphal inclusions varied between all the combinations tested. There were structural differences between mycorrhizas ofH. cylindrosporum/Q. acutissima grown in soil and growth pouches, which indicate that the growth pouch environment can induce artefacts in roots. Fruit bodies ofH. cylindrosporum developed in pots withQ. acutissima. AlthoughP. tinctorius has been used to inoculate oak seedlings in the nursery, results of this study indicate thatH. cylindrosporum may also be an effective ectomycorrhizal fungus forQ. serrata andQ. acutissima.  相似文献   

10.
The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots.  相似文献   

11.
Hirsutella rhossiliensis and Verticillium chlamydosporium infected second-stage juveniles (J2) and eggs of Meloidogyne hapla, respectively, in petri dishes and in organic soil in pots planted to lettuce in the greenhouse. In vitro, H. rhossiliensis produced 78 to 124 spores/infected J2 of M. hapla. The number of J2 in roots of lettuce seedlings decreased exponentially with increasing numbers of vegetative colonies of H. rhossiliensis in the soil. At an infestation of 8 M. hapla eggs/cm³ soil, 1.9 colonies of H. rhossiliensis/cm³ soil were needed for a 50% decrease in J2 penetration of lettuce roots. Egg-mass colonization with V. chlamydosporium varied from 16% to 43% when soil was infested with 8 M. hapla eggs and treated with 5,000 or 10,000 chlamydospores of V. chlamydosporium/cm³ soil. This treatment resulted in fewer J2 entering roots of bioassay lettuce seedlings planted in the infested soils after harvesting the first lettuce plants 7 weeks after infestation with M. hapla. Hirsutella rhossiliensis (0 to 4.3 colonies/cm3 soil), V. chlamydosporium (500 to 10,000 chlamydospores/cm3 soil), or their combination, added to organic soils with 8 M. hapla eggs/cm³ soil, generally did not affect lettuce weight, root galling, or egg production of M. hapla. However, when lettuce was replanted in a mix of infested and uninfested soil (1:3 and 1:7, v:v), egg production was lower in soils with V. chlamydosporium than in soils without the fungus. Both fungi have potential to reduce the M. hapla population, but at densities below 8 eggs/cm³ soil.  相似文献   

12.
I. Louis  G. Lim 《Plant and Soil》1988,112(1):37-43
Soybean (Glycine max cv. Mikiwashima) seedlings were inoculated with two tropical isolates of the vesicular-arbuscular mycorrhizal fungusGlomus clarum (Gc); isolateGcA was isolated from soils of low phosphate (P) and isolateGcB from soils of high P availability. In soil with low P,GcA was more efficient in increasing growth, nodulation and nitrogenase activity ofG. max thanGcB. Upon contact with the root surface, pre-infection hyphae ofGcA penetrated the root directly and rapidly colonised the cortical cells, while those ofGcB grew extensively on theroot surface with little host penetration. Mycorrhizal colonisation was higher in roots inoculated withGcA. Dual inoculation with the two isolates did not increase the effect of the single inoculation withGcA. In soils of high P status, both isolates formed pre-infection hyphae with few entry ooints and percentage mycorrhizal root colonisation was consequently low. The variation in efficacy of the isolates emphasizes the significance of evaluating host specificity when selecting efficient VA mycorrhizae strains for field studies.  相似文献   

13.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

14.
Spatial sampling was used to investigate temporal density-dependent parasitism of the plant-parasitic nematodeCriconemella xenoplax byHirsutella rhossiliensis in three peach orchards on eight sample dates. The patches of soil in which the nematode and fungus interacted were assumed to possess similar density-dependent dynamics and to be small, independent, and asynchronous. Furthermore, sampling of separate patches was assumed to provide similar information with respect to density dependence as would temporal (repeated) sampling of the same patch. Percent parasitism was dependent on the number ofC. xenoplax/100 cm3 soil (P=0.0001). The slope was unaffected by orchard or date but ranged from 0.0001 to 0.0043 depending on distance from the irrigation furrow. The relative shallowness of the slope and the large variation in percent parasitism not explained by nematode density suggest thatH. rhossiliensis is a weak regulator ofC. xenoplax population density.  相似文献   

15.
Field and greenhouse experiments showed that yield losses of sugarbeet, Beta vulgaris, did not occur in soil infested with fewer than eight Heterodera schachtii eggs/g soil. However, larger population densities greatly reduced sugarbeet yield. In the field experiment, the yield in microplots inoculated with more than 64 eggs/g soil was less than 20% of yields in uninoculated microplots. Nevertheless, tolerance limits of 4 and 1.8 eggs/g soil, in greenhouse and field microplots, respectively, were derived by fitting the data with the equation y =m + (l - m)zP-T. Maximum rates of multiplication of 55 and more than 300, and equilibrium densities of 340 and 130 eggs/g soil, were estimated in greenhouse and field microplot tests, respectively.  相似文献   

16.
Summary The technique of15N isotope dilution was used to verify that nitrogen was fixed and transferred to the plant byKlebsiella pneumoniae strain Pp in association withPoa pratensis orTriticum aestivum. Surface sterilized, sprouting seeds were inoculated withK. pneumoniae and grown in sand in modified Leonard jars. Potassium nitrate enriched with15N was used to provide N concentrations ranging from 10–40 mg Nl–1 nutrient solution. After 10–18 weeks the shoots and roots were analyzed separately for dry matter, N content, total N, and atom %15N excess. The acetylene reduction technique was used to test for the presence of N2-fixing organisms on the roots. The data from15N isotope dilution demonstrated that up to 33.8% of N in the shoots ofP. pratensis and 15.9% in those ofT. aestivum were derived from associative N2 fixation byK. pneumoniae. In most experiments the dry matter yield, N content, and total N yield of the shoots ofP. pratensis were increased byK. pneumoniae inoculation, whereas inoculation had no significant effect on the dry matter yield, N content or total N of the shoots ofT. aestivum.  相似文献   

17.
Summary Mycoparasitic behaviour ofCephalosporium roseo-griseum Saksena withAspergillus flavus Link. ex Fries was studiedin vitro. Frequent coiling of hyphae ofC. roseo-griseum around the conidiophores ofA. flavus, penetration of hyphae ofC. roseo-griseum inside those ofA. flavus, and formation of resting bodies byC. roseo-griseum in the conidiophores ofA. flavus were observed.  相似文献   

18.
The ability of Hirsutella rhossiliensis to colonize various substrates in sterile and nonsterile soil was measured. Hirsutella rhossiliensis was recovered from 67% and 77% of living, inoculated Criconemella xenoplax incubated in sterile and nonsterile soil, respectively. In contrast, the fungus was recovered from 100% and 18% of heat-killed, inoculated nematodes incubated on sterile and nonsterile soil, respectively. Hirsutella rhossiliensis was readily recovered from inoculated, autoclaved wheat seeds incubated in sterile soil but not from seeds incubated in nonsterile soil. Autoclaved peach roots were a poor substrate for the fungus. Germination of H. rhossiliensis spores incubated on agar disks above soil was about 90% regardless of soil treatment. However, germ tube length was greatly suppressed by nonsterile soil. Our results suggest that H. rhossiliensis is a better parasite than saprophyte and that the fungus may be specialized for attacking nematodes.  相似文献   

19.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

20.
Usuki F  Narisawa K 《Mycorrhiza》2005,15(1):61-64
A resynthesis study was conducted to clarify the relationship between the root endophyte, Heteroconium chaetospira and the ericaceous plant, Rhododendron obtusum var. kaempferi. The host plant roots were recovered 2 months after inoculation, and the infection process and colonization pattern of the fungus were observed under a microscope. The hyphae of H. chaetospira developed structures resembling ericoid mycorrhizas, such as hyphal coils within the host epidermal cells. These structures were morphologically the same as previously reported ericoid mycorrhizal structures. The frequencies of hyphal coils within the epidermal cells of host roots ranged from 13 to 20%. H. chaetospira did not promote or reduce host plant growth. This is the first reported study that H. chaetospira is able to form structures resembling mycorrhizas within the roots of ericaceous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号