首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Predicting which molecules can bind to a given binding site of a protein with known 3D structure is important to decipher the protein function, and useful in drug design. A classical assumption in structural biology is that proteins with similar 3D structures have related molecular functions, and therefore may bind similar ligands. However, proteins that do not display any overall sequence or structure similarity may also bind similar ligands if they contain similar binding sites. Quantitatively assessing the similarity between binding sites may therefore be useful to propose new ligands for a given pocket, based on those known for similar pockets.  相似文献   

2.

Background  

Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure.  相似文献   

3.

Background  

Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates.  相似文献   

4.

Background  

Most methods for predicting functional sites in protein 3D structures, rely on information on related proteins and cannot be applied to proteins with no known relatives. Another limitation of these methods is the lack of a well annotated set of functional sites to use as benchmark for validating their predictions. Experimental findings and theoretical considerations suggest that residues involved in function often contribute unfavorably to the native state stability. We examine the possibility of systematically exploiting this intrinsic property to identify functional sites using an original procedure that detects destabilizing regions in protein structures. In addition, to relate destabilizing regions to known functional sites, a novel benchmark consisting of a diverse set of hand-curated protein functional sites is derived.  相似文献   

5.

Background

Mimivirus isolated from A. polyphaga is the largest virus discovered so far. It is unique among all the viruses in having genes related to translation, DNA repair and replication which bear close homology to eukaryotic genes. Nevertheless, only a small fraction of the proteins (33%) encoded in this genome has been assigned a function. Furthermore, a large fraction of the unassigned protein sequences bear no sequence similarity to proteins from other genomes. These sequences are referred to as ORFans. Because of their lack of sequence similarity to other proteins, they can not be assigned putative functions using standard sequence comparison methods. As part of our genome-wide computational efforts aimed at characterizing Mimivirus ORFans, we have applied fold-recognition methods to predict the structure of these ORFans and further functions were derived based on conservation of functionally important residues in sequence-template alignments.

Results

Using fold recognition, we have identified highly confident computational 3D structural assignments for 21 Mimivirus ORFans. In addition, highly confident functional predictions for 6 of these ORFans were derived by analyzing the conservation of functional motifs between the predicted structures and proteins of known function. This analysis allowed us to classify these 6 previously unannotated ORFans into their specific protein families: carboxylesterase/thioesterase, metal-dependent deacetylase, P-loop kinases, 3-methyladenine DNA glycosylase, BTB domain and eukaryotic translation initiation factor eIF4E.

Conclusion

Using stringent fold recognition criteria we have assigned three-dimensional structures for 21 of the ORFans encoded in the Mimivirus genome. Further, based on the 3D models and an analysis of the conservation of functionally important residues and motifs, we were able to derive functional attributes for 6 of the ORFans. Our computational identification of important functional sites in these ORFans can be the basis for a subsequent experimental verification of our predictions. Further computational and experimental studies are required to elucidate the 3D structures and functions of the remaining Mimivirus ORFans.  相似文献   

6.

Background  

For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i) to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii) to apply it to Mg2+-proteins sharing <30% sequence identity. Our motif discovery method employs structural alphabet encoding to convert 3D structures to the corresponding 1D structural letter sequences, where the Mg2+-structural motifs are identified as recurring structural patterns.  相似文献   

7.

Background  

The increasing number of known protein structures provides valuable information about pharmaceutical targets. Drug binding sites are identifiable and suitable lead compounds can be proposed. The flexibility of ligands is a critical point for the selection of potential drugs. Since computed 3D structures of millions of compounds are available, the knowledge of their binding conformations would be a great benefit for the development of efficient screening methods.  相似文献   

8.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   

9.

Background

Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families.

Methodology/Principal Findings

Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticle-associated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread.

Conclusions

This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to several types of extracellular matrix. They may define sites of protein interaction with DNA or other proteins, based on ontology analysis. These results can help guide experimental studies on the biochemistry of cuticle assembly.  相似文献   

10.

Background

Plants encode a large number of leucine-rich repeat receptor-like kinases. Legumes encode several LRR-RLK linked to the process of root nodule formation, the ligands of which are unknown. To identify ligands for these receptors, we used a combination of profile hidden Markov models and position-specific iterative BLAST, allowing us to detect new members of the CLV3/ESR (CLE) protein family from publicly available sequence databases.

Results

We identified 114 new members of the CLE protein family from various plant species, as well as five protein sequences containing multiple CLE domains. We were able to cluster the CLE domain proteins into 13 distinct groups based on their pairwise similarities in the primary CLE motif. In addition, we identified secondary motifs that coincide with our sequence clusters. The groupings based on the CLE motifs correlate with known biological functions of CLE signaling peptides and are analogous to groupings based on phylogenetic analysis and ectopic overexpression studies. We tested the biological function of two of the predicted CLE signaling peptides in the legume Medicago truncatula. These peptides inhibit the activity of the root apical and lateral root meristems in a manner consistent with our functional predictions based on other CLE signaling peptides clustering in the same groups.

Conclusion

Our analysis provides an identification and classification of a large number of novel potential CLE signaling peptides. The additional motifs we found could lead to future discovery of recognition sites for processing peptidases as well as predictions for receptor binding specificity.  相似文献   

11.

Background  

Biological evolution conserves protein residues that are important for structure and function. Both protein stability and function often require a certain degree of structural co-operativity between spatially neighboring residues and it has previously been shown that conserved residues occur clustered together in protein tertiary structures, enzyme active sites and protein-DNA interfaces. Residues comprising protein interfaces are often more conserved compared to those occurring elsewhere on the protein surface. We investigate the extent to which conserved residues within protein-protein interfaces are clustered together in three-dimensions.  相似文献   

12.

Background  

Recent, rapid growth in the quantity of available genomic data has generated many protein sequences that are not yet biochemically classified. Thus, the prediction of biochemical function based on structural motifs is an important task in post-genomic analysis. The InterPro databases are a major resource for protein function information. For optimal results, these databases should be searched at regular intervals, since they are frequently updated.  相似文献   

13.

Background  

We apply a new machine learning method, the so-called Support Vector Machine method, to predict the protein structural class. Support Vector Machine method is performed based on the database derived from SCOP, in which protein domains are classified based on known structures and the evolutionary relationships and the principles that govern their 3-D structure.  相似文献   

14.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   

15.
16.

Background  

Methods are now available for the prediction of interaction sites in protein 3D structures. While many of these methods report high success rates for site prediction, often these predictions are not very selective and have low precision. Precision in site prediction is addressed using Theoretical Microscopic Titration Curves (THEMATICS), a simple computational method for the identification of active sites in enzymes. Recall and precision are measured and compared with other methods for the prediction of catalytic sites.  相似文献   

17.
18.

Background  

The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level.  相似文献   

19.

Background  

Independent surveys of human gene promoter regions have demonstrated an overrepresentation of G3X n1G3X n2G3X n3G3 motifs which are known to be capable of forming intrastrand quadruple helix structures. In spite of the widely recognized importance of G-quadruplex structures in gene regulation and growing interest around this unusual DNA structure, there are at present only few such structures available in the Nucleic Acid Database. In the present work we generate by molecular modeling feasible G-quadruplex structures which may be useful for interpretation of experimental data.  相似文献   

20.

Background  

The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号