首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The homeobox, a 183 bp DNA sequence element, was originally identified as a region of sequence similarity between many Drosophila homeotic genes. The homeobox codes for a DNA-binding motif known as the homeodomain. Homeobox genes have been found in many animal species, including sea urchins, nematodes, frogs, mice and humans. To isolate homeobox-containing sequences from the plant Arabidopsis thaliana, a cDNA library was screened with a highly degenerate oligonucleotide corresponding to a conserved eight amino acid sequence from the helix-3 region of the homeodomain. Using this strategy two cDNA clones sharing homeobox-related sequences were identified. Interestingly, both of the cDNAs also contain a second element that potentially codes for a leucine zipper motif which is located immediately 3'' to the homeobox. The close proximity of these two domains suggests that the homeodomain-leucine zipper motif could, via dimerization of the leucine zippers, recognize dyad-symmetrical DNA sequences.  相似文献   

3.
4.
Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions of the Arabidopsis genes were highly homologous to each other and to the coding region of the tobacco gene but distinct from the GST genes that have been isolated from arabidopsis thusfar. Overexpression of a cDNA clone in Escherichia coli revealed that the AT103-1A protein had GST activity.  相似文献   

5.
We have recently characterized Nicotiana cytoplasmic (cyt) tRNAGCA Cys as novel UGA suppressor tRNA. Here we have isolated its corresponding (NtC1) and a variant (NtC2) gene from a genomic library of Nicotiana rustica. Both tRNACys genes are efficiently transcribed in HeLa cell nuclear extract and yield mature cyt tRNAsCys. Sequence analysis of the upstream region of the RAD51 single-copy gene of the Arabidopsis thaliana genome revealed a cluster of three tRNACys genes which have the same polarity and comprise highly similar flanking sequences. Of the three Arabidopsis tRNACys genes only one (i.e. AtC2) appears to code for a functional gene which exhibits an almost identical nucleotide sequence to NtC1. These are the first sequenced nuclear tDNAsCys of plant origin.  相似文献   

6.
The organization and nucleotide sequence of a gene from Chlamydomonas reinhardtii encoding a member of the DNA photolyase/blue light photoreceptor protein family is reported. A region of over 7 kb encompassing the gene was sequenced. Northern analysis detected a single 4.2 kb mRNA. The gene consists of eight exons and seven introns, and encodes a predicted protein of 867 amino acids. The first 500 amino acids exhibit significant homology with previously sequenced DNA photolyases, showing the closest relationship to mustard (Sinapis alba) photolyase (43% identity). An even higher identity, 49%, is obtained when the Chlamydomonas gene product is compared to the putative blue-light photoreceptor (HY4) from Arabidopsis thaliana. Both the Chlamydomonas and the Arabidopsis proteins differ from the well characterized DNA photolyases in that they contain a carboxyl terminal extension of 367 and 181 amino acids, respectively. However, there is very little homology between the carboxyl terminal domains of the two proteins. A previously isolated Chlamydomonas mutant, phrl, which is deficient in DNA photolyase activity, especially in the nucleus, was shown by RFLP analysis not to be linked to the gene we have isolated. We propose this gene encodes a candidate Chlamydomonas blue light photoreceptor.  相似文献   

7.
MDH1: an apple homeobox gene belonging to the BEL1 family   总被引:2,自引:0,他引:2  
Differential display was used to isolate genes differentially expressed early in fruit development of apple (Malus domestica Borkh.). This approach resulted in the isolation of MDH1, a homeobox gene with a homeodomain similar to that of BELL1 (BEL1), which is involved in regulation of ovule development in Arabidopsis. However, outside the homeodomain MDH1 is quite different from BEL1. In apple, MDH1 mRNA was predominantly found in flowers, expanding leaves and expanding fruit. In pre-anthesis flowers, in situ hybridization showed that MDH1 mRNA accumulated in ovules. To further investigate the function of this new homeobox gene, MDH1 was transformed into Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis plants showed dwarfing, reduced fertility and changes in carpel and fruit (silique) shape. The size and shape of the cells in the transgenic fruit was irregular. Both the transgenic phenotypes in Arabidopsis and the expression pattern of this gene in apple are consistent with the idea that MDH1 is likely to play an important role in control of plant fertility.  相似文献   

8.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

9.
In this study we describe a novel gene, which was isolated in an attempt to search for specific plant resistance genes of Arabidopsis against isolates of the phytopathogenic bacterium Xanthomonas campestris pv. campestris. The gene was cloned by differential screening of a genomic library of the Xcc 750-resistant ecotype Col-0, using cDNA populations derived from ecotype Col-0 and the Xcc 750-susceptible ecotype Oy-0. The isolated gene, CXc750, is differentially expressed in ecotypes of Arabidopsis thaliana. In addition, although highly expressed in uninfected plants, gene expression increases in response to pathogen attack. CXc750 potentially codes for a small, basic protein of about 10 kDa. The predicted protein product contains a potential signal leader peptide at the amino-terminal end but no ER retention sequence and no further transmembrane domain. This indicates that the gene product is transported to other compartments or out of the cell.The possible function of CXc750 as a member of the plant defense response system is discussed.  相似文献   

10.
11.
12.
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.  相似文献   

13.
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plantArabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designatedAtUBC1-3 andAtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of theAtUBC1-3 andAtUBC4-6 genes by the histochemical analysis of transgenicArabidopsis containing the corresponding promoters fused to the -glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between theAtUBC1-3 andAtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s inArabidopsis.  相似文献   

14.
A cDNA encoding the NADPH-protochlorophyllide oxidoreductase (Pchlide reductase) of Arabidopsis thaliana has been isolated and sequenced. The cDNA contains the complete reading frame for the precursor of the Pchlide reductase. The deduced amino acid sequence of the Arabidopsis enzyme closely resembles the corresponding sequences of barley and oat. The cDNA has been used as a template for the synthesis of the enzyme protein in Escherichia coli. An antiserum was raised against this enzyme protein and both the antiserum and the cDNA were used as experimental tools to study the effects of light on the Pchlide reductase in A. thaliana.When etiolated seedlings of Arabidopsis were exposed to light the enzyme activity and the concentration of the enzyme protein rapidly declined. Similar light effects have been described previously for other angiosperms. In contrast to most of these species, however, in Arabidopsis only minor changes in Pchlide reductase mRNA content could be observed when etiolated seedlings were exposed to light.  相似文献   

15.
16.
Summary Organ-specific and constitutive expression of the Arabidosis HSP18.2 gene under normal growth conditions (22° C) was observed in transgenic A. thaliana, which carried a fusion gene composed of the promoter region of HSP18.2, one of the genes for low molecular weight heat-shock proteins in Arabidopsis, and the gene for -glucuronidase (GUS) from Escherichia coli. In order to clarify the organ-specific nature of promoter expression, various mutations that affect flower morphology were introduced into the transgenic Arabidopsis line, AHS9. The results show that the pattern of expression observed in sepals, filaments, and styles is regulated in a structure-dependent manner, and suggest that the HSP18.2 gene might have an important role in the process of differentiation of flower buds, as do several other stress-related genes.  相似文献   

17.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

18.
C2H2 zinc finger protein genes encode nucleic acid-binding proteins involved in the regulation of gene activity. AtZFP1 (Arabidopsis thaliana zinc finger protein 1) is one member of a small family of C2H2 zinc finger-encoding sequences previously characterized from Arabidopsis. The genomic sequence corresponding to the AtZFP1 cDNA has been determined. Molecular analysis demonstrates that AtZFP1 is a unique, intronless gene which encodes a 1100 nucleotides mRNA highly expressed in roots and stems. A construct in which 2.5 kb of AtZFP1 upstream sequences is linked to the -glucuronidase gene was introduced into Arabidopsis by Agrobacterium-mediated transformation of roots. Histochemical analysis of transgenic Arabidopsis carrying the AtZFP1 promotor:-glucuronidase fusion shows good correlation with RNA blot hybridization analysis. This transgenic line will be a useful tool for analyzing the regulation of AtZFP1 to further our understanding of its function.  相似文献   

19.
20.
A gene encoding a protein with extensive homology to the largest subunit of the multicatalytic proteinase complex (proteasome) has been identified in Arabidopsis thaliana. This gene, referred to as AtPSM30, is entirely encompassed within a previously characterized radiation-induced deletion, which may thus provide the first example of a proteasome null mutation in a higher eukaryote. However, the growth rate and fertility of Arabidopsis plants do not appear to be significantly affected by this mutation, even though disruption experiments in yeast have shown that most proteasome subunits are essential. Analysis of mRNA levels in developing seedlings and mature plants indicates that expression of AtPSM30 is differentially regulated during development and is slightly induced in response to stress, as has been observed for proteasome genes in yeast, Drosophila, and mammals. Southern blot analysis indicates that the Arabidopsis genome contains numerous sequences closely related to AtPSM30, consistent with recent reports of at least two other proteasome genes in Arabidopsis. A comparison of the deduced amino acid sequences for all proteasome genes reported to date suggests that multiple proteasome subunits evolved in eukaryotes prior to the divergence of plants and animals.GenBank accession number: M98495  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号