共查询到20条相似文献,搜索用时 0 毫秒
1.
RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization
下载免费PDF全文

Didier C Broday L Bhoumik A Israeli S Takahashi S Nakayama K Thomas SM Turner CE Henderson S Sabe H Ronai Z 《Molecular and cellular biology》2003,23(15):5331-5345
RNF5 is a RING finger protein found to be important in the growth and development of Caenorhabditis elegans. The search for RNF5-associated proteins via a yeast two-hybrid screen identified a LIM-containing protein in C. elegans which shows homology with human paxillin. Here we demonstrate that the human homologue of RNF5 associates with the amino-terminal domain of paxillin, resulting in its ubiquitination. RNF5 requires intact RING and C-terminal domains to mediate paxillin ubiquitination. Whereas RNF5 mediates efficient ubiquitination of paxillin in vivo, protein extracts were required for in vitro ubiquitination, suggesting that additional modifications and/or an associated E3 ligase assist RNF5 targeting of paxillin ubiquitination. Mutant Ubc13 efficiently inhibits RNF5 ubiquitination, suggesting that RNF5 generates polychain ubiquitin of the K63 topology. Expression of RNF5 increases the cytoplasmic distribution of paxillin while decreasing its localization within focal adhesions, where it is primarily seen under normal growth. Concomitantly, RNF5 expression results in inhibition of cell motility. Via targeting of paxillin ubiquitination, which alters its localization, RNF5 emerges as a novel regulator of cell motility. 相似文献
2.
Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration 总被引:1,自引:0,他引:1
Cheng CW Yeh JC Fan TP Smith SK Charnock-Jones DS 《Biochemical and biophysical research communications》2008,365(2):285-290
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis. 相似文献
3.
Early shaping of Xenopus laevis embryos occurs through convergent and extension movements, a process that is driven by intercalation of polarized dorsal mesodermal cells and regulated by non-canonical Wnt signalling. Here, we have identified Xenopus syndecan-4 (xSyn4), a cell-surface transmembrane heparan sulphate proteoglycan. At the gastrula stage, xSyn4 is expressed in the involuting dorsal mesoderm and the anterior neuroectoderm. Later, it is found in the pronephros, branchial arches, brain and tailbud. Both gain- and loss-of-function of xSyn4 impaired convergent extension movements in Xenopus embryos and in activin-treated ectodermal explants. xSyn4 interacts functionally and biochemically with the Wnt receptor Frizzled7 (xFz7) and its signal transducer Dishevelled (xDsh). Furthermore, xSyn4 is necessary and sufficient for translocation of xDsh to the plasma membrane - a landmark in the activation of non-canonical Wnt signalling. Our results suggest that the ability of xSyn4 to translocate xDsh is regulated by fibronectin, a component of the extracellular matrix required for proper convergent extension movements. We propose a model where xSyn4 and fibronectin cooperate with xFz7 and Wnt in the specific activation of the non-canonical Wnt pathway. 相似文献
4.
The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL).
下载免费PDF全文

K A West H Zhang M C Brown S N Nikolopoulos M C Riedy A F Horwitz C E Turner 《The Journal of cell biology》2001,154(1):161-176
The small GTPases of the Rho family are intimately involved in integrin-mediated changes in the actin cytoskeleton that accompany cell spreading and motility. The exact means by which the Rho family members elicit these changes is unclear. Here, we demonstrate that the interaction of paxillin via its LD4 motif with the putative ARF-GAP paxillin kinase linker (PKL) (Turner et al., 1999), is critically involved in the regulation of Rac-dependent changes in the actin cytoskeleton that accompany cell spreading and motility. Overexpression of a paxillin LD4 deletion mutant (paxillinDeltaLD4) in CHO.K1 fibroblasts caused the generation of multiple broad lamellipodia. These morphological changes were accompanied by an increase in cell protrusiveness and random motility, which correlated with prolonged activation of Rac. In contrast, directional motility was inhibited. These alterations in morphology and motility were dependent on a paxillin-PKL interaction. In cells overexpressing paxillinDeltaLD4 mutants, PKL localization to focal contacts was disrupted, whereas that of focal adhesion kinase (FAK) and vinculin was not. In addition, FAK activity during spreading was not compromised by deletion of the paxillin LD4 motif. Furthermore, overexpression of PKL mutants lacking the paxillin-binding site (PKLDeltaPBS2) induced phenotypic changes reminiscent of paxillinDeltaLD4 mutant cells. These data suggest that the paxillin association with PKL is essential for normal integrin-mediated cell spreading, and locomotion and that this interaction is necessary for the regulation of Rac activity during these events. 相似文献
5.
Latinkic BV Mercurio S Bennett B Hirst EM Xu Q Lau LF Mohun TJ Smith JC 《Development (Cambridge, England)》2003,130(11):2429-2441
Cyr61 is a secreted, heparin-binding, extracellular matrix-associated protein whose activities include the promotion of adhesion and chemotaxis, and the stimulation of fibroblast and endothelial cell growth. Many, if not all, of these activities of Cyr61 are mediated through interactions with integrins. We explore the role of Cyr61 in the early development of Xenopus laevis. Gain- and loss-of-function experiments show that Xcyr61 is required for normal gastrulation movements. This role is mediated in part through the adhesive properties of Xcyr61 and its related ability to modulate assembly of the extracellular matrix. In addition, Xcyr61 can, in a context-dependent manner, stimulate or inhibit signalling through the Wnt pathway. These properties of Xcyr61 provide a mechanism for integrating cell signalling, cell adhesion and cell migration during gastrulation. 相似文献
6.
Anakwe K Robson L Hadley J Buxton P Church V Allen S Hartmann C Harfe B Nohno T Brown AM Evans DJ Francis-West P 《Development (Cambridge, England)》2003,130(15):3503-3514
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature. 相似文献
7.
8.
Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling 总被引:1,自引:0,他引:1
Doubravska L Krausova M Gradl D Vojtechova M Tumova L Lukas J Valenta T Pospichalova V Fafilek B Plachy J Sebesta O Korinek V 《Cellular signalling》2011,23(5):837-848
The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands. We revealed that O-linked acylation of serine is required for the subsequent S-palmitoylation of cysteine. As such, mutant proteins that lack the crucial serine residue are not lipidated. Interestingly, although double-acylation of Wnt1 was indispensable for signalling in mammalian cells, in Xenopus embryos the S-palmitoyl-deficient form retained the signalling activity. In the case of Wnt3a, the functional duality of the attached acyls was less prominent, since the ligand lacking S-linked palmitate was still capable of signalling in various cellular contexts. Finally, we show that the signalling competency of both Wnt1 and Wnt3a is related to their ability to associate with the extracellular matrix. 相似文献
9.
Endothelial cell (EC) movement is an initiating and rate-limiting event in the neogenesis and repair of blood vessels. Here, we explore the hypothesis that microviscosity of the plasma membrane (PM) is a key physiological regulator of cell movement. Aortic ECs treated with membrane-active agents, such as alpha-tocopherol, cholesterol and lysophospholipids, exhibited a biphasic dependency on membrane microviscosity, in which moderate increases enhanced EC migration, but increases beyond a threshold markedly inhibited migration. Surprisingly, angiogenic growth factors, that is, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), also increased membrane microviscosity, as measured in live cells by fluorescence recovery after photobleaching (FRAP). The localization of Rac to the PM was modified in cells treated with membrane-active agents or growth factors, suggesting a molecular mechanism for how membrane microviscosity influences cell movement. Our data show that angiogenic growth factors, as well as certain lipophilic molecules, regulate cell motility through alterations in membrane properties and the consequent relocalization of critical signalling molecules to membranes. 相似文献
10.
Cell dynamics mediated through cell-extracellular matrix contacts, such as adhesion and motility involve the precise regulation of large complexes of structural and signaling molecules called focal adhesions (FAs). Paxillin is a multi-domain FA adaptor protein containing five amino-terminal paxillin leucine-aspartate repeat (LD) motifs and four carboxyl-terminal Lin-11 Isl-1 and Mec-3 (LIM) domains. The LD motifs support paxillin binding to actopaxin, integrin linked kinase (ILK), FA kinase (FAK), paxillin kinase linker (PKL) and vinculin. Of the LIM domains, LIM2 and 3 comprise the paxillin FA-targeting motif, with phosphorylation of these domains modulating paxillin targeting and cell adhesion to fibronectin (Fn). The identity of the paxillin FA targeting partner remains to be determined; however, the LIM domains mediate interactions with tubulin and the protein-tyrosine phosphatase (PTP)-PEST. PTP-PEST binding requires both LIM3 and 4, whereas, the precise LIM target of tubulin binding is not known. In this report, we demonstrate that the individual paxillin LIM2 and 3 domains support specific binding to tubulin and suggest a potential role for this interaction in the regulation of paxillin sub-cellular compartmentalization. In addition, expression of paxillin molecules with mutations in the tubulin- and PTP-PEST-binding LIM domains differentially impaired Chinese hamster ovary K1 (CHO.K1) cell adhesion and migration to Fn. Perturbation of LIM3 or 4 inhibited adhesion while mutation of LIM2 or 4 decreased cell motility. Interestingly, expression of tandem LIM2-3 inhibited cell adhesion and spreading while LIM3-4 stimulated a well-spread polarized phenotype. These data offer further support for a critical role for paxillin in cell adhesion and motility. 相似文献
11.
Akira Sato Hideki Yamamoto Hiroshi Sakane Hirofumi Koyama Akira Kikuchi 《The EMBO journal》2010,29(1):41-54
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the β‐catenin‐independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this action. Fz2 was internalized through a clathrin‐mediated route in response to Wnt5a, and inhibition of clathrin‐dependent internalization suppressed the ability of Wnt5a to activate Rac. As another action of Wnt5a, it inhibited Wnt3a‐dependent lipoprotein receptor‐related protein 6 (LRP6) phosphorylation and β‐catenin accumulation. Wnt3a‐dependent phosphorylation of LRP6 was enhanced in Wnt5a knockout embryonic fibroblasts. Fz2 was also required for the Wnt3a‐dependent accumulation of β‐catenin, and Wnt5a competed with Wnt3a for binding to Fz2 in vitro and in intact cells, thereby inhibiting the β‐catenin pathway. This inhibitory action of Wnt5a was not affected by the impairment of clathrin‐dependent internalization. These results suggest that Wnt5a regulates distinct pathways through receptor internalization‐dependent and ‐independent mechanisms. 相似文献
12.
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Delta716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Delta716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation. 相似文献
13.
14.
Germline LKB1/STK11 mutations are associated with the cancer-prone Peutz-Jeghers syndrome (PJS) in humans, and nullizygosity provokes a poorly understood constellation of developmental perturbations in the mid-gestational mouse. To gain a better understanding of the processes regulated by LKB1, we have exploited the experimental merits of the developing Xenopus embryo. Here, specific inhibition of XEEK1, the Xenopus orthologue of LKB1, engendered developmental anomalies - shortened body axis and defective dorsoanterior patterning - associated previously with aberrant Wnt signalling. In line with this, LKB1/XEEK1 cooperates with the Wnt-beta-catenin signalling in axis induction and modulates the expression of Wnt-responsive genes in both Xenopus embryos and mammalian cells. We establish that LKB1/XEEK1 acts upstream of beta-catenin in the Wnt-beta-catenin pathway in vivo. LKB1/XEEK1 regulates glycogen synthase kinase (GSK)3beta phosphorylation and it is physically associated in vivo with GSK3beta and protein kinase C (PKC)-zeta, a known GSK3 kinase. These studies show that LKB1/XEEK1 is required for Wnt-beta-catenin signalling in frogs and mammals and provides novel insights into its role in vertebrate developmental patterning and carcinogenesis. 相似文献
15.
The adaptor protein paxillin plays an important role in cell migration. Although the c-Jun amino-terminal kinase (JNK) phosphorylation of paxillin on Ser 178 has been found to be critical for cell migration, the precise mechanism by which JNK regulates cell migration is still not very clear. Here, the migration of human corneal epithelial (HCE) cells was used to determine which signaling pathways are involved in EGF-induced paxillin phosphorylation. Paxillin was phosphorylated on Tyr 31 and Tyr 118 after induction of migration by EGF in HCE cells. Specific inhibition of JNK activation by inhibitor SP600125 or overexpression of a dominant-negative JNK mutant not only blocked EGF-induced cell migration, but also eliminated tyrosine phosphorylation of paxillin on Tyr 31 and Tyr 118. HCE cells overexpressing paxillin-S178A mutant also exhibited lower mobility, and reduced phosphorylation of Tyr 31 and Tyr 118. However, paxillin-S178A-inhibited cell migration can be rescued by overexpression of paxillin-Y31E/Y118E mutant. Importantly, inhibition of JNK by SP600125 or overexpression of paxillin-S178A mutant prevented the association of FAK with paxillin. Taken together, these results suggest that phosphorylation of paxillin on Ser 178 by JNK is required for the association of paxillin with FAK, and subsequent tyrosine phosphorylation of paxillin. 相似文献
16.
Wnts are secreted glycoproteins implicated in diverse processes during embryonic patterning in metazoans. They signal through seven-transmembrane receptors of the Frizzled (Fz) family [1] to stabilise beta-catenin [2]. Wnts are antagonised by several extracellular inhibitors including the product of the dickkopf1 (dkk1) gene, which was identified in Xenopus embryos and is a member of a multigene family. The dkk1 gene acts upstream of the Wnt pathway component dishevelled but its mechanism of action is unknown [3]. Although the function of Dkk1 as a Wnt inhibitor in vertebrates is well established [3-6], the effect of other Dkks on the Wnt/beta-catenin pathway is unclear. Here, we report that a related family member, Dkk2, activates rather than inhibits the Wnt/beta-catenin signalling pathway in Xenopus embryos. Dkk2 strongly synergised with Wnt receptors of the Fz family to induce Wnt signalling responses. The study identifies Dkk2 as a secreted molecule that is able to activate Wnt/beta-catenin signalling. The results suggest that a coordinated interplay between inhibiting dkk1 and activating dkk2 can modulate Fz signalling. 相似文献
17.
BACKGROUND: LGR5 (Leucine-rich repeat-containing G-protein coupled receptor 5) is the most established marker for intestinal stem cells. Mouse models show that LGR5+ cells are the cells of origin of intestinal cancer, and LGR5 expression is elevated in human colorectal cancers, however very little is known about LGR5 function or its contribution to the stem cell phenotype and to colorectal cancer. PRINCIPAL FINDINGS: We have modulated the expression of LGR5 by RNAi (inhibitory RNAs) or overexpression in colorectal cancer cell lines. Paradoxically, ablation of LGR5 induces increased invasion and anchorage-independent growth, and enhances tumourigenicity in xenografts experiments. Conversely, overexpression of LGR5 augments cell adhesion, reduces clonogenicity and attenuates tumourigenicity. Expression profiling revealed enhanced wnt signalling and upregulation of EMT genes upon knockdown of LGR5, with opposite changes in LGR5 overexpressing cells. These findings suggest that LGR5 is important in restricting stem cells to their niche, and that loss of LGR5 concomitant with activated wnt signalling may contribute to the invasive phenotype of colorectal carcinomas. 相似文献
18.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions. 相似文献
19.
20.
beta-Catenin: a pivot between cell adhesion and Wnt signalling 总被引:14,自引:0,他引:14
Bienz M 《Current biology : CB》2005,15(2):R64-R67
Mutual adhesion of animal cells is intimately linked to Wnt signaling through a shared component: beta-catenin, or Armadillo in Drosophila. Recent work indicates how beta-catenin shifts from cell adhesion to Wnt signaling, a switch associated with epithelial-mesenchymal transitions and cancer. 相似文献