首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The approach that most animal cells employ to regulate intracellular pH (pH(i)) is not too different conceptually from the way a sophisticated system might regulate the temperature of a house. Just as the heat capacity (C) of a house minimizes sudden temperature (T) shifts caused by acute cold and heat loads, the buffering power (beta) of a cell minimizes sudden pH(i) shifts caused by acute acid and alkali loads. However, increasing C (or beta) only minimizes T (or pH(i)) changes; it does not eliminate the changes, return T (or pH(i)) to normal, or shift steady-state T (or pH(i)). Whereas a house may have a furnace to raise T, a cell generally has more than one acid-extruding transporter (which exports acid and/or imports alkali) to raise pH(i). Whereas an air conditioner lowers T, a cell generally has more than one acid-loading transporter to lower pH(i). Just as a house might respond to graded decreases (or increases) in T by producing graded increases in heat (or cold) output, cells respond to graded decreases (or increases) in pH(i) with graded increases (or decreases) in acid-extrusion (or acid-loading) rate. Steady-state T (or pH(i)) can change only in response to a change in chronic cold (or acid) loading or chronic heat (or alkali) loading as produced, for example, by a change in environmental T (or pH) or a change in the kinetics of the furnace (or acid extrudes) or air conditioner (or acid loaders). Finally, just as a temperature-control system might benefit from environmental sensors that provide clues about cold and heat loading, at least some cells seem to have extracellular CO(2) or extracellular HCO(3)(-) sensors that modulate acid-base transport.  相似文献   

5.
6.
A new mechanism of selective transport and localization of proteins inside any living cell is presented. The mechanism is based on pH-induced protein trapping. It is shown that spontaneous and unique spatial redistribution of different proteins is possible in any aqueous solution with stable non-uniform distribution of H(+) ions. This phenomenon was observed in artificial systems with fixed non-uniform pH distribution and in living cells.  相似文献   

7.
8.
Ingested plastic scintillator spheres are shown to be a useful tool for investigating intracellular transport of material labelled by a weak beta emitter. It is found that-by numerically solving a linear integral equation with known kernel-the time evolution of the intracellular emitter density profile in the vicinity of the cell membrane is determinable from easily obtained experimental data. Applications to special biological systems are noted.  相似文献   

9.
The intracellular pathogen concept classifies pathogenic microbes on the basis of their site of replication and dependence on host cells. This concept played a fundamental role in establishing the field of cellular microbiology, founded in part by Dr. Pascale Cossart, whose seminal contributions are honored in this issue of Molecular Microbiology. The recognition that microbes can access and replicate in privileged compartments within host cells has led to many new and fruitful lines of investigation into the biology of the cell and mechanisms of cell-mediated immunity. However, like any scientific concept, the intracellular pathogen concept can become a dogma that constrains thinking and oversimplifies complex and dynamic host–pathogen interactions. Growing evidence has blurred the distinction between “intracellular” and “extracellular” pathogens and demonstrated that many pathogens can exist both within and outside of cells. Although the intracellular pathogen concept remains useful, it should not be viewed as a rigid classification of pathogenic microbes, which exhibit remarkable variation and complexity in their behavior in the host.  相似文献   

10.
T A Slotkin  B Burwell  C Lau 《Life sciences》1980,27(21):1975-1978
The adrenal medulla contains an intracellular opiate receptor associated with the chromaffin granule. This receptor may participate in regulation of the catecholamine content of the granule.  相似文献   

11.
12.
Ward DT 《Cell calcium》2004,35(3):217-228
As a G protein-coupled receptor (GPCR), the extracellular calcium-sensing receptor (CaR) responds to changes in extracellular free calcium concentration by inducing intracellular signalling. These CaR-induced signals then specifically modulate cellular functions such as parathyroid hormone secretion from the parathyroid glands and calcium reabsorption in the kidney and thus to understand how the CaR functions one must understand how it signals. CaR-induced signalling involves intracellular Ca2+ mobilisation/oscillations as well as the activation of various phospholipases and protein kinases and the suppression of cAMP formation. This review will detail the intracellular pathways by which the CaR is believed to elicit its physiological functions and summarises the evidence for cell- and agonist-specific differential signalling.  相似文献   

13.
The biochemical steps by which bacterial topoisomerases alter the topology of DNA are well known. However, it has been a more vexing task to establish physiological roles and sites of action of the different topoisomerases within the context of the bacterial cell cycle. This difficulty can be attributed in part to the redundancy among the activities of the different enzymes. In this microreview, we will focus on recent progress in understanding the topological structure of the chromosome, analysis of topoisomerase mechanism in single-molecule assays and recent data on the regulation and integration of topoisomerase activity within the cell cycle that have all brought a new perspective to the action of topoisomerases in the bacterial cell.  相似文献   

14.
Ward BM 《Journal of virology》2005,79(8):4755-4763
Previous work indicated that vaccinia intracellular mature virus (IMV) utilizes microtubules to move from the viral factory to the site of intracellular envelopment and that expression of the viral A27 protein is required for this transport. To investigate further the role of A27 in IMV intracellular transport, a recombinant vaccinia virus was constructed that had the A27L gene deleted and expressed a yellow fluorescent protein (YFP)-A4 chimera in place of the normal A4 protein. The resulting recombinant, vYFP-A4/DeltaA27, produced relatively normal quantities of virus in a one-step growth curve but had a small plaque phenotype. Subsequent experiments demonstrated that vYFP-A4/DeltaA27 was severely defective in envelope virus production. Despite the absence of A27, live digital video fluorescent microscopy visualized YFP-labeled IMV movement in cells infected with the recombinant. Virion movement approached 3 mum/s and was sensitive to the microtubule depolymerizing drug nocodazole. In addition, IMV could be discerned transiting away from and back towards viral factories. Immunofluorescent staining determined that the distance traveled by A27-deficient virions was sufficient for transport to the site of envelopment. These results indicate that IMVs are capable of bidirectional movement on microtubules, suggesting that they are able to interact with both kinesin and dynein microtubule motors in the absence of A27 and that the distance traveled is sufficient to deliver IMV to the site of wrapping.  相似文献   

15.
16.
17.
18.
The selection of intracellular antibodies   总被引:7,自引:0,他引:7  
The intracellular expression of antibodies in mammalian cells is a strategy to inhibit the in vivo function of selected molecules but is limited by the unpredictable behaviour of antibodies when intracellularly expressed. Recent advances in the field of antibody expression in Escherichia coli show that the introduction of mutations can improve the properties of some antibody domains, but the general applicability of this approach to intracellular antibodies remains to be proved. As a complement to rational approaches, we describe selection schemes in which antibodies are selected on the basis of their performance in vivo as intracellular antibodies.  相似文献   

19.
A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalised BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.  相似文献   

20.
Cytoskeletal elements and intracellular transport   总被引:1,自引:0,他引:1  
Recent advances in the understanding of the functions of various components of the cytoskeleton indicate that, besides serving a structural role, the cytoskeletal elements may regulate the transport of several proteins in the cell. Studies reveal that there are co-operative interactions between the actin and microtubule cytoskeletons including functional overlap in the transport influenced by different motor families. Multiple motors are probably involved in the control of the dynamics of many proteins and intriguing hints about how these motors are co-ordinated are appearing. It has been shown that some of the intermediate elements also participate in selected intracellular transport mechanisms. In view of the author's preoccupation with the steroid receptor systems, special attention has been given to the role of the cytoskeletal elements, particularly actin, in the intracellular transport of steroid receptors and receptor-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号