首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper describes the preparation of lung acellular alveolar matrix fragments and culture of rat type II pneumocytes directly on the alveolar epithelial basement membrane, thereby permitting study of the effect of lung basement membrane on the morphology and function of type II cells. Collagen types I, III, IV and V, laminin and fibronectin were located by immunofluorescence in the lung matrix with the same patterns as those described for the normal human lung. Transmission electron microscopy (TEM) of the fragments revealed intact epithelial and endothelial basement membranes. The matrix maintained the normal three-dimensional alveolar architecture. Glycosaminoglycans were still present by Alcian Blue staining. Isolated adult rat type II pneumocytes cultured on 150 micron thick fragments of acellular human alveolar extracellular matrix undergo gradual cytoplasmic flattening, with loss of lamellar bodies, mitochondria, and surface microvilli. These changes are similar to the in vivo differentiation of type II pneumocytes into type I pneumocytes. The type II pneumocyte behaviour on the lung epithelial basement membrane contrasted sharply with that of the same cell type cultured on a human amnionic basement membrane. On the latter surface the cells retained their cuboidal shape, lamellar bodies and surface microvilli for up to 8 days. These observations suggest that the basement membranes from different organ systems exert differing influences on the morphology and function of type II pneumocytes and that the alveolar and amnionic basement membranes may have differing three-dimensional organizations. The technique of direct culture of type II cells on the lung basement membrane provides a useful tool for studying the modulating effect of the basement membrane on alveolar epithelial cells.  相似文献   

2.
3.
In mammalian lung, type II pneumocytes are especially critical in normal alveolar functioning, as they are the major source of surfactant and the progenitors of type I alveolar cells. Moreover, they undergo proliferation and transformation into type I cells in most types of cellular injury, where flattened type I pneumocytes are selectively destroyed. Hyperplasia of alveolar type II cells has also been described in some human chronic lung diseases. In lung, type II pneumocytes and non-ciliated bronchiolar cells are the unique cell types that contain a considerable amount of peroxisomes. Due to the presence of dihydroxyacetone phosphate acyltransferase and non-specific lipid-transfer protein, these organelles have been suggested to be involved in the synthesis and/or transport of the lipid moiety of surfactant. In the present research, the peroxisomal marker enzyme catalase was immunolocalised at the light microscopic level, utilising the avidin-biotin complex method, in lung specimens excised from newborn, adult and aged rats. In all the examined stages the immunoreactivity was so selective for type II pneumocytes it allowed quantitation of these cells by an automated detection system. This was accomplished on specimens from newborn rat lung, in which labelled alveolar cells were counted by a grey level-based procedure and their main morphometric parameters were determined.  相似文献   

4.
 Caveolin is a major structural protein of caveolae, also known as plasmalemmal vesicles, which are particularly abundant in type I pneumocytes and capillary endothelial cells of lung parenchyma. Here we demonstrate that caveolin expression in the alveolar epithelium of rats and mini pigs is strikingly downregulated after irradiation-induced lung injury. Indirect immunoperoxidase staining with polyclonal anti-caveolin antibodies, confirmed by double fluorescence studies with type I cell-specific monoclonal anti-cytokeratin antibodies or lectins, revealed a dramatic loss of caveolin immunoreactivity in type I pneumocytes. In contrast, caveolin expression increased in endothelial cells. Immunoblotting of lung homogenates from normal and irradiated rats using specific anti-caveolin antibodies confirmed the presence of caveolin in normal tissue and its marked decrease of expression in fibrotic tissue. The loss of caveolin as an important structural protein of caveolae in alveolar epithelial cells may be an early indicator of serious type I cell injury during fibrogenesis. The increase of caveolin immunoreactivity in endothelia of blood vessels may indicate that different types of caveolae and/or different regulatory mechanisms of caveolin expression exist. Accepted: 28 May 1997  相似文献   

5.
This study aimed to identify and specify the glycotypes of cell populations in normal human lung including types I and II pneumocytes, alveolar macrophages and mast cells, and also in the larger tissue structures of lung, including blood vessels and bronchi/bronchioles, using lectin- and immuno-histochemistry on paraffin-embedded tissue from 11 normal cases. The alveolar macrophages were anti-CD68 positive whereas the cells lining the alveolar walls were positive for cytokeratins. The alveolar macrophages in normal lung tissues showed a broad spectrum of staining for different subsets of N-linked saccharides, N-acetylgalactosamine, N-acetylglucosamine, terminal beta-D-galactose and sialyl groups. This study showed that some lectins could be used as specific markers for some cell types i.e. Galanthus nivalis and Narcissus pseudonarcissus lectins for macrophages, Psophocarpus tetragonolobus lectin-II for capillary endothelium, Dolichos biflorus agglutinin for bronchial epithelial cells, Lycopersicon esculentum, Phytolacca americana or Triticum vulgaris (succinylated) for type I pneumocytes and Hippeastrum hybrid or Maclura pomifera lectins for type II pneumocytes. Patchy staining of type I pneumocytes by peanut agglutinin indicated the possibility of two distinct populations of these cells or a pattern of differentiation that is unapparent morphologically.  相似文献   

6.
Fibrosing alveolitis is a disease with inflammatory, proliferative, and fibrotic components. In different models, it has been shown that the cytokine interleukin-10 (IL-10) plays a conflicting role in inflammation-associated fibrotic processes, inasmuch as it is an anti-inflammatory cytokine but also a TH2 cytokine with inherent pro-fibrotic effects. IL-10 is produced primarily by inflammatory cells. In this report, we show in a rat model of radiation-induced fibrosing alveolitis that IL-10 is also produced by type I alveolar epithelial cells in both normal and fibrotic lungs. The total amount of IL-10 in the lung is increased after irradiation, but type I pneumoyctes contain less IL-10. The R3/1 permanent type I pneumocyte cell line also contains IL-10, which is reduced after irradiation. Whereas in the normal lung, the entire alveolar surface is covered by IL-10-producing pneumocytes, this continuity is interrupted in fibrotic lungs, because type I pneumocytes lack full differentiation and thus full spreading over the alveolar surface. The exposure of the IL-10-negative epithelial basal membrane may allow for an easier attachment of inflammatory cells such as alveolar macrophages. These cells have the potential to act in a pro-inflammatory way by tumor necrosis factor alpha and also in a pro-fibrotic way by activating TH2 cytokines.  相似文献   

7.
8.
We examined oxygen consumption by lung slices and measured the volume density of mitochondria of granular pneumocytes, alveolar type I cells, and alveolar capillary endothelial cells in several species. We found that lung oxygen consumption (mu-1 02 times h-1 times mg DNA-1) varies inversely with the log of animal body weight and with the species alveolar diameter and directly with the species respiratory rate. The volume density of granular pneumocyte mitochondria show a direct linear correlation with the lung's oxygen consumption and the species respiratory rate, and an inverse linear correlation with the species alveolar diameter. The volume density of mitochondria in type I alveolar epithelial cells and capillary endothelial cells, considered together, did not differ in the two species studied (mouse and rat). We conclude that there are interspecies differences in oxygen consumption by lung cells and that granular pneumocytes contribute to these differences. We suggest that, at least part of these differences, are related to interspecies differences in surfactant secretory activity.  相似文献   

9.
Affinity purified rabbit anti-mouse E-cadherin antibodies, reacting with diverse rat epithelia, were used to characterize epithelial changes in a radiation-induced fibrosis model of rat lung by immunoblotting techniques, immunoperoxidase and immunofluorescence microscopy. Immunostaining of normal rat lung tissues revealed a predominant staining of type II pneumocytes. Immunoelectron microscopy confirmed the immunohistochemical data of normal lung tissue obtained at the light microscopic level. In severely injured rat lung, we found enhanced immunoreactivity for E-cadherin at the surface of type I alveolar epithelial cells. The results suggest that E-cadherin is an adhesion molecule that is modulated after pathological alteration of the alveolar epithelium and that the antiserum may be useful for the characterization of normal and diseased rat epithelia.  相似文献   

10.
Type I cell-like morphology in tight alveolar epithelial monolayers   总被引:7,自引:0,他引:7  
The pulmonary alveolar epithelium separates air spaces from a fluid-filled interstitium and might be expected to exhibit high resistance to fluid and solute movement. Previous studies of alveolar epithelial barrier properties have been limited due to the complex anatomy of adult mammalian lung. In this study, we characterized a model of isolated alveolar epithelium with respect to barrier transport properties and cell morphology. Alveolar epithelial cells were isolated from rat lungs and grown as monolayers on tissue culture-treated Nuclepore filters. On Days 2-6 in primary culture, monolayers were analyzed for transepithelial resistance (Rt) and processed for electron microscopy. Mean cell surface area and arithmetic mean thickness (AMT) were determined using morphometric techniques. By Day 5, alveolar epithelial cells in vitro exhibited morphologic characteristics of type I alveolar pneumocytes, with thin cytoplasmic extensions and protruding nuclei. Morphometric data demonstrated that alveolar pneumocytes in vitro develop increased surface area and decreased cytoplasmic AMT similar to young type I cells in vivo. Concurrent with the appearance of type I cell-like morphology, monolayers exhibited high Rt (greater than 1000 omega.cm2), consistent with the development of tight barrier properties. These monolayers of isolated alveolar epithelial cells may reflect the physiological and morphological properties of the alveolar epithelium in vivo.  相似文献   

11.
After administration to mice of butylated hydroxytoluene, the pulmonary alveolar epithelium adopts a biphasic pattern of regenerative proliferation. This hitherto-unnoticed pattern of epithelial repair in the lung was revealed by the investigation of stereologic parameters. The earliest evidence of epithelial injury involved the type I pneumocytes, whose necrosis and disappearance from the septal surface was shown by a lowered surface density (SV). Proliferation of the type II pneumocytes ensued: the volume density (VV) rose above normal soon after the onset of necrosis, only to decrease as the cells slowly differentiated into intermediate and then type I pneumocytes. A second peak of type II pneumocytes appeared as the denuding of septa persisted. This twofold proliferation was also shown by the numerical density count (NV). Differentiation into an intermediate pneumocyte was itself documented by the raised VV and SV values. These observations of a biphasic mode of proliferation of type II pneumocytes raise the question of an unsuspected, persistent action of the toxic agent within pulmonary alveoli and serve to document the homeostasis of epithelial regeneration.  相似文献   

12.
Human dendritic cell LAMP (hDC-LAMP) is a unique member of the lysosome-associated membrane protein (LAMP) family with a tissue distribution initially described as restricted to major histocompatibility class II (MHC II) compartments of activated DC before the translocation of MHC II to the cell surface [Immunity 9 (1998) 325]. In this report, we show that hDC-LAMP is also expressed by lung type II pneumocytes, another cell type with constitutive expression of MHC II. A recombinant hDC-LAMP protein and a monospecific anti-hDC-LAMP polyclonal antibody were prepared. The antibody reacted specifically with hDC-LAMP sequences of hDC-LAMP protein expressed in transfected cells and with a 54 kDa protein of normal human lung tissue with properties corresponding to those of transgene expressed hDC-LAMP. Immunohistochemical analysis of hDC-LAMP in human lung showed its presence in alveolar type II epithelial cells (type II pneumocytes) as well as in cells in the interfollicular area of bronchus-associated lymph nodes, where interdigitating DCs are concentrated, and with lesser staining of alveolar macrophages. The native protein contained approximately 16% carbohydrates, most of which are sialyl N-linked oligosaccharides, with an acidic isoelectric point (pI 4.8). The restricted localization of this protein to lung type II pneumocytes and DCs is in contrast to hLAMP-1, which was present in many cell types of the lung and lymph node. Type II pneumocytes are known to express MHC II and the abundant expression of hDC-LAMP in these cells as well as in DCs suggests its possible relationship to specific MHC II related function(s) of DC and type II pneumocytes.  相似文献   

13.
 The degree of immunoreactive connexin43 (Cx43) in rat lung was evaluated during the development of radiation-induced pulmonary fibrosis in rat by a double immunofluorescence technique using polyclonal antisera to Cx43 and monoclonal antibodies to cytokeratins on cryostat sections. In normal rat lungs, Cx43 was detected in pneumocytes type II and I, in large blood vessel endothelia, in peribronchial smooth muscle cells, and in some peribronchial and perivascular interstitial cells. As early as 1 week after irradiation, enhanced immunoreactivity for Cx43 in the epithelial cells was detected. In severely injured lungs (about 3 months after irradiation), Cx43 was found also in the cytoplasm of type II pneumocytes. These findings were confirmed by western blot data. Western blot analysis also revealed increased phosphorylation of Cx43. It remains to be investigated whether the increased content of Cx43 in irradiated rat lung may be due to an enhanced number of gap junctions between type I and II alveolar epithelial cells. Accepted: 20 May 1996  相似文献   

14.
OBJECTIVES: In this study, we have sought to establish the cellular origin and proliferative status of the renal parenchyma as it regenerates after damage induced by mercuric chloride, with or without erythropoietin treatments, that might alter the response. MATERIALS AND METHODS: Female mice were irradiated and male whole bone marrow was transplanted into them. Six weeks later recipient mice were assigned to one of four groups: control, mercuric chloride treated, erythropoietin treated and treated with mercuric chloride plus erythropoietin. RESULTS: Tubular injury scores were high 3 days after mercuric chloride and had recovered partially after 14 days, in line with serum urea nitrogen levels. Confocal microscopy confirmed the tubular location of bone marrow-derived cells. A 'four-in-one' analytical technique (identifying cell origin, tubular phenotype, tubular basement membranes and S-phase status) revealed that tubular necrosis increased bone marrow derivation of renal tubular epithelium from a baseline of approximately 1.3% to approximately 4.0%. Erythropoietin increased the haematocrit, but no other effects were detected. CONCLUSION: As 1 in 12 proximal tubular cells in S-phase was derived from bone marrow, we conclude that in the kidney, the presence of bone marrow-derived cells makes a minor but important regenerative contribution after tubular necrosis.  相似文献   

15.
Cytochemical localization of Na+-K+-ATPase in rat type II pneumocytes   总被引:3,自引:0,他引:3  
The distribution of sodium-potassium-activated adenosinetriphosphatase (Na+-K+-ATPase) in the alveolar portion of rat lungs was examined by indirect immunofluorescence with the use of a mouse monoclonal anti-rat Na+-K+-ATPase and by ultrastructural cytochemistry using p-nitrophenylphosphate as substrate. The reaction was inhibitable by 10 mM ouabain or by the omission of K+ from the reaction mixture. Cysteine or levamisole was used to inhibit alkaline phosphatase activity. By immunofluorescence, staining was confined to cuboidal cells in alveolar spaces. These were tentatively identified as type II pneumocytes. By ultrastructural cytochemistry reaction product was present on the cytoplasmic side of the basolateral membranes of type II pneumocytes. No reaction product was observed in type I pneumocytes or in endothelium. These results indicate that type II pneumocytes contain more Na+-K+-ATPase, an enzyme important in vectorial electrolyte transport, than type I pneumocytes or endothelial cells. More sensitive methods, however, are required to determine the amounts and distribution of this enzyme in type I pneumocytes and pulmonary vascular endothelial cells.  相似文献   

16.
17.
Expression of a retrovirally encoded allogeneic MHC class I gene in bone marrow-derived cells can be used to induce tolerance to the product of the retrovirally transduced gene. In this work we examined whether expression of a retrovirally transduced allogeneic MHC class I gene in bone marrow-derived cells from recombinase-activating gene-1 (RAG-1)-deficient mice was sufficient to induce tolerance when transplanted into conditioned hosts together with bone marrow from MHC-matched wild-type mice. Reconstitution of mice with either MHC-matched RAG-1-deficient or wild-type bone marrow transduced with the allogeneic MHC class I gene H-2K(b) led to long-term expression of K(b) on the surface of bone marrow-derived hematopoietic lineages. T cells from mice reconstituted with H-2K(b)-transduced wild-type bone marrow were tolerant to K(b). In contrast, expression of K(b) in the periphery of mice reconstituted with a mixture of retrovirally transduced RAG-1-deficient bone marrow and mock-transduced wild-type bone marrow fell below detectable levels by 4 wk after transplantation. T cells that developed in these mice appeared to be hyporesponsive to K(b), demonstrating that expression of K(b) on bone marrow-derived APCs was not sufficient to induce tolerance. Our data suggest that induction of tolerance in molecular chimeras requires expression of the retrovirally transduced allogeneic MHC Ag on the surface of mature lymphocytes that populate the host thymus.  相似文献   

18.
Pneumocystis, a fungal, extracellular pathogen causes a life-threatening pneumonia in patients with severe immunodeficiencies. In the absence of CD4 T cells, Pneumocystis infection results in vigorous CD8 T cell influx into the alveolar and interstitial spaces of the lung. This response results in lung damage characterized by low pO2 and albumin leakage into the bronchoalveolar lavage fluid similar to other CD8 T cell-mediated interstitial lung diseases. How this extracellular pathogen elicits a CD8 T cell response is not clear, and it was the aim of our study to determine the Ag specificity of the recruited CD8 T cells and to determine whether MHC class I (MHC I) expression was necessary to initiate lung damage. Using an adoptive T cell-transfer model with either polyclonal wild-type CD8 T cells or transgenic influenza virus-specific CD8 T cells we found that CD8 T cell recruitment is Ag-specific and requires the continuous presence of the Pneumocystis pathogen. Bone marrow chimera experiments using Rag-1 and beta2-microglobulin-deficient mice as hosts demonstrated a requirement for MHC I expression on nonbone marrow-derived cells of the lung. This suggests either direct processing of Pneumocystis Ags by nonbone marrow-derived cells of the lung or the induction of lung damage triggered by a lung-specific autoantigen. Using perforin-, Fas-, and IFN-gamma-deficient animals, we showed that these molecules are not directly involved in the CD8-mediated lung damage. However, CD8 T cell-mediated lung damage is Ag-specific is induced by a MHC I-expressing nonbone marrow-derived cell in the lung and is dependent on the continued presence of live Pneumocystis.  相似文献   

19.
Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.  相似文献   

20.
Circulating endothelial progenitor cells (EPCs) play a pivotal role in angiogenesis. Hepatocyte growth factor (HGF) is known to induce proliferation and motility in endothelial cells, and to play a role in mitogenic and morphogenic actions. However, the role of HGF in EPC mobilization has not been clearly described yet. We investigated the effect of HGF on mobilizing EPCs and on angiogenesis in elastase-induced lung injury. HGF significantly increased the triple-positive (Sca-1(+), Flk-1(+), and c-kit(+)) fraction in peripheral mononuclear cells in mice. The bone marrow-derived cells were recruited into the injured lungs, where they differentiated to capillary endothelial cells. HGF induced proliferation of both bone marrow-derived and resident endothelial cells in the alveolar wall. In conclusion, the present study suggests that HGF induces EPC mobilization from the bone marrow and enhances the proliferation of endothelial cells in vivo. These complex effects induced by HGF orchestrate pulmonary regeneration in emphysematous lung parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号