首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our morphological and molecular studies indicate that species from the southern hemisphere previously placed in Delesseria belong in Paraglossum and that Paraglossum and Apoglossum comprise a separate tribe, the Apoglosseae, S.-W. Lin, Fredericq & Hommersand, trib. nov., within the family Delesseriaceae. From a vegetative perspective the Apoglosseae is readily recognized because some or all fourth-order cell rows are formed on the inner sides of third-order cell rows. All fourth-order cell rows grow adaxially in Apoglossum, whereas both adaxial and abaxial cell rows are present in Paraglossum. Periaxial cells do not divide in Apoglossum, whereas they divide transversely in Paraglossum in the same way as in Delesseria. Major branches are formed mainly from the margins of midribs in the Apoglosseae. The procarp consists of a straight carpogonial branch and two sterile cells, with the second formed on the same side as the first. The carpogonium cuts off two connecting cells in tandem from its apical end, the terminal cell being nonfunctional and the subterminal cell typically fusing with the auxiliary cell. Gonimoblast filaments radiate in all directions from the gonimoblast initials and produce carposporangia terminally in branched chains, with pit connections between the inner gonimoblast cells broadening and enlarging. The auxiliary cell, supporting cell, and sterile cells unite into a fusion cell, which remains small in Apoglossum but incorporates the branched inner gonimoblast filaments and cells in the floor of the cystocarp in Paraglossum. Elongated inner cortical cells seen in mature cystocarps in the Delesserieae are absent in the Apoglosseae. Phylogenetic studies based on rbcL (RuBisCO large subunit gene) sequence analyses strongly support the recognition of the Apoglosseae within the subfamily Delesserioideae of the Delesseriaceae, in agreement with our previous observations based primarily on analyses of large subunit ribosomal DNA (LSU).  相似文献   

2.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

3.
The taxonomic placement of strains belonging to the extremophilic red alga Galdieria maxima has been controversial due to the inconsistent phylogenetic position inferred from molecular phylogenetic analyses. Galdieria maxima nom. inval. was classified in this genus based on morphology and molecular data in the early work, but some subsequent molecular phylogenetic analyses have inferred strains of G. maxima to be closely related to the genus Cyanidioschyzon. To address this controversy, an isolated strain identified as G. maxima using the rbcL gene sequence as the genetic barcode was examined using a comprehensive analysis across morphological, physiological, and genomic traits. Herein are reported the chloroplast-, mitochondrion-, and chromosome-level nuclear genome assemblies. Comparative analysis of orthologous gene clusters and genome arrangements suggested that the genome structure of this strain was more similar to that of the generitype of Cyanidioschyzon, C. merolae than to the generitype of Galdieria, G. sulphuraria. While the ability to uptake various forms of organic carbon for growth is an important physiological trait of Galdieria, this strain was identified as an ecologically obligate photoautotroph (i.e., the inability to utilize the natural concentrations of organic carbons) and lacked various gene models predicted as sugar transporters. Based on the genomic, morphological, and physiological traits, we propose this strain to be a new genus and species, Cyanidiococcus yangmingshanensis. Re-evaluation of the 18S rRNA and rbcL gene sequences of the authentic strain of G. maxima, IPPAS-P507, with those of C. yangmingshanensis suggests that the rbcL sequences of “G. maxima” deposited in GenBank correspond to misidentified isolates.  相似文献   

4.
Blade-forming red algae occur worldwide and, prior to DNA sequencing, had been notoriously difficult to identify and classify, especially when lacking critical reproductive features. This, coupled in New Zealand with many longstanding assumptions that taxa were identical to non-New Zealand species or genera, resulted in many misapplied names. Pugetia delicatissima R.E. Norris, an endemic New Zealand blade-forming species of the family Kallymeniaceae, is actually comprised of one existing and one new species belonging to two distinct genera, as established by our phylogenetic analyses of DNA sequences from the rbcL gene. Analyses of combined rbcL and LSU genes showed that neither is closely related to the generitype of Pugetia, the northern-eastern Pacific, P. fragilissima Kylin. We propose the names Judithia and Wendya for these two newly revealed genera. In addition to diagnostic rbcL and LSU sequences, Judithia is morphologically and anatomically characterized by rounded to oblong blades that do not taper basally at the stipe, loosely aggregated surface cortical cells and cystocarps lacking both a pericarp and an ostiole, all features observed in the holotype of P. delicatissima. Wendya, in contrast, is characterized by blades that taper both apically and basally, compactly arranged surface cortical cells and cystocarps that have both a pericarp and a distinct ostiole. The two genera also are distinguished from one other, as well as from Pugetia by features of pre- and post-fertilization development, including the number of subsidiary cells produced on carpogonial and auxiliary branch systems, whether subsidiary cells in the carpogonial branch system fuse with the supporting cell or not, and the site of origin of gonimoblast cells. Although small in area, New Zealand hosts ten of the 27 currently recognized genera in the Kallymeniaceae and is the southern-hemisphere region of greatest generic diversification in this family.  相似文献   

5.
Sargassum is one of the most species‐rich genera in the brown algae with over 400 described species worldwide. The bulk of these species occurs in Pacific‐Indian ocean waters with only a small portion found on the Atlantic side of the Isthmus of Panama. Sargassum also has one of the most subdivided and complex taxonomic systems used within the algae. Systematic distinctions within the genus are further complicated by high rates of phenotypic variability in several key morphological characters. Molecular analyses in such systems should allow testing of systematic concepts while providing insights into speciation and evolutionary patterns. Global molecular phylogenetic analyses using both conserved and variable regions of the Rubisco operon (rbcL and rbcL‐IGS‐rbcS) were performed with species from the Gulf of Mexico, Caribbean, and Pacific basin. Results confirm earlier analyses based on rbcL‐IGS‐rbcS from Pacific species at the subgeneric and sectional level while providing additional insights into the systematics and phylogenetics on a global scale. For example, species east of the Isthmus of Panama form a distinct well‐resolved clade within the tropical subgenus. This result in sharp contrast to traditional systematic treatments but provides a window into the evolutionary history of this genus in the Pacific and Atlantic Ocean basins and a possible means to time speciation events.  相似文献   

6.
The phylogeny of the green algal Order Dasycladales was inferred by maximum parsimony and Bayesian analyses of chloroplast‐encoded rbcL sequence data. Bayesian analysis suggested that the tribe Acetabularieae is monophyletic but that some genera within the tribe, such as Acetabularia Lamouroux and Polyphysa Lamouroux, are not. Bayesian analysis placed Halicoryne Harvey as the sister group of the Acetabularieae, a result consistent with limited fossil evidence and monophyly of the family Acetabulariaceae but was not supported by significant posterior probability. Bayesian analysis further suggested that the family Dasycladaceae is a paraphyletic assemblage at the base of the Dasycladales radiation, casting doubt on the current family‐level classification. The genus Cymopolia Lamouroux was inferred to be the basal‐most dasycladalean genus, which is also consistent with limited fossil evidence. Unweighted parsimony analyses provided similar results but primarily differed by the sister relationship between Halicoryne Lamouroux and Bornetella Munier‐Chalmas, thus supporting the monophyly of neither the families Acetabulariaceae nor Dasycladaceae. This result, however, was supported by low bootstrap values. Low transition‐to‐transversion ratios, potential loss of phylogenetic signal in third codon positions, and the 550 million year old Dasycladalean lineage suggest that dasyclad rbcL sequences may be saturated due to deep time divergences. Such factors may have contributed to inaccurate reconstruction of phylogeny, particularly with respect to potential inconsistency of parsimony analyses. Regardless, strongly negative g1 values were obtained in analyses including all codon positions, indicating the presence of considerable phylogenetic signal in dasyclad rbcL sequence data. Morphological features relevant to the separation of taxa within the Dasycladales and the possible effects of extinction on phylogeny reconstruction are discussed relative to the inferred phylogenies.  相似文献   

7.
Phylogenetic relationships of the Ceramium sinicola complex (C. interruptum and C. sinicola) including C. codicola were studied using nucleotide sequences of rbcL and small subunit rDNA, and the RUBISCO spacer was used for sequence comparison of each species. A reassessment of the taxonomic rank and the evolutionary trend within the complex was inferred from a comparative morphological study and molecular data sets based on 11 samples from eight populations from the Pacific coast of the United States and Mexico. Intraspecific relationships were poorly resolved, but the resurrection of C. interruptum as a distinct species was strongly supported by both morphological and molecular data. Ceramium interruptum is distinguished by the combination of the following features: thalli uncorticated at the first internode above the dichotomy, presence of four corticating filaments, 7–11 segments between branching points, rhizoids digitate, and epiphytic on a variety of hosts. Our molecular analyses show that C. sinicola is the sister group to C. codicola, and C. interruptum is basal to them. These phylogenetic relationships allowed for an assessment of the trend in the evolution of cortication pattern and attachment mode to the host.  相似文献   

8.
A phylogeny of 21 haptophyte algae was inferred by maximum parsimony, neighbor-joining, and maximum likelihood analyses of sequences of the plastid-encoded gene, rbcL. Sequence variation in the spacer region of the RUBISCO operon was also investigated. In all the rbcL trees constructed, the haptophytes form two distinct clades: one includes the Pavlovales and the other includes the Prymnesiales, Coccosphaerales, and Isochrysidales (all sensu Parke and Green 1976 . This relationship coincides with the recent taxonomic treatment splitting the division into two subclasses, the Prymnesidae and Pavlovidae ( Cavalier-Smith 1989 ) or the Prymnesiophycidae and the Pavlovophycidae using botanical suffixes ( Jordan and Green 1994 ), or into two classes, the Patelliferea and the Pavlovea ( Cavalier-Smith 1993 ). In the Prymnesiophycidae, all the coccolithophorids examined are placed in a single clade, which suggests a single origin of the coccolithophorids and the ability of coccolith formation in the haptophytes. The genus Chrysochromulina is polyphyletic. Species of Chrysochromulina with a very long haptonema and a compressed cell body (typical of species including the type C. parva Lackey) form a clade, including Imantonia, that is often classified in the Isochrysidales in the neighbor-joining tree, whereas some species possessing a nontypical cell body and cell covering form a clade with Prymnesium and Platychrysis in all trees. It is suggested that loss of the haptonema in Imantonia and the reduction in Prymnesium and Platychrysis occurred secondarily and independently in two different lineages. Within the coccolithophorids, four clades are recognized: Pleurochrysis, Calyptrosphaera-Cruciplacolithus-Calcidiscus-Umbilicosphaera, Helicosphaera, and Emiliania-Gephyrocapsa. A non-coccolith-bearing haptophyte, Isochrysis, is an ingroup of the Emiliania-Gephyrocapsa clade, suggesting its secondary loss of the ability to form a coccolith. Sequence comparison of the spacer region of RUBISCO operon supports most results obtained in the analysis of rbcL sequences. Monophyly of the Prymnesiales sensu Parke and Green is still unclear because of low (<50%) bootstrap support for this group.  相似文献   

9.
Species belonging to the newly established genus Kumanoa were sampled from locations worldwide. DNA sequence data from the rbcL gene, cox1 barcode region, and universal plastid amplicon (UPA) were collected. The new sequence data for the rbcL were combined with the extensive batrachospermalean rbcL data available in GenBank. Single gene rbcL results showed the genus Kumanoa to be a well‐supported clade, and there was high statistical support for many of the terminal nodes. However, with this gene alone, there was very little support for any of the internal nodes. Analysis of the concatenated data set (rbcL, cox1, and UPA) provided higher statistical support across the tree. The taxa K. vittata and K. amazonensis formed a basal grade, and both were on relatively long branches. Three new species are proposed, K. holtonii, K. gudjewga, and K. novaecaledonensis; K. procarpa var. americana is raised to species level. In addition, the synonymy of K. capensis and K. breviarticulata is proposed, with K. capensis having precedence. Five new combinations are made, bringing the total number of accepted species in Kumanoa to 31. The phylogenetic analyses did not reveal any interpretable biogeographic patterns within the genus (e.g., K. spermatiophora from the tropical oceanic island Maui, Hawaii, was sister to K. faroensis from temperate midcontinental Ohio in North America). Previously hypothesized relationships among groups of species were not substantiated in the phylogenetic analyses, and no intrageneric classification is recommended based on current knowledge.  相似文献   

10.
Polysiphonia sensu lato comprises approximately 200 species, which are currently assigned to several different genera. To date, one of these genera, namely, Polysiphonia, has been reported to have 17 species. Here, we describe for the first time P. freshwateri sp. nov. and P. koreana sp. nov. from Uljin and Ulleung Island, Korea, based on morphological and molecular evidence. Polysiphonia freshwateri sp. nov. and P. koreana sp. nov. are characterized by having the typical Polysiphonia features. Polysiphonia freshwateri sp. nov. is further characterized by having abundant trichoblasts, conspicuous scar cells, and tetrasporangia arranged in spiral series. Polysiphonia koreana sp. nov. is further characterized by having very scarce scar cells placed between two pericentral cells, from which cicatrigenous branches arise. The results of our rbcL sequence analyses support the taxonomic placement of P. freshwateri sp. nov. and P. koreana sp. nov. within Polysiphonia.  相似文献   

11.
The systematics of the Prasiolales was investigated by phylogenetic inference based on analyses of the rbcL and 18S rRNA genes for representatives of all four genera currently attributed to this order (Prasiococcus, Prasiola, Prasiolopsis, Rosenvingiella), including all type species. The rbcL gene had higher sequence divergence than the 18S rRNA gene and was more useful for phylogenetic inference at the ranks of genus and species. In the rbcL gene phylogeny, three main clades were observed, corresponding to Prasiola, Prasiolopsis, and Rosenvingiella. Prasiococcus was nested among species of Prasiola occurring in subaerial and supralittoral habitats. Trichophilus welckeri Weber Bosse, a subaerial alga occurring in the fur of sloths in Amazonia, was closely related to Prasiolopsis ramosa Vischer. The species of Prasiola were grouped into three well‐supported clades comprising (i) marine species, (ii) freshwater and terrestrial species with linear blades, and (iii) terrestrial species with rounded or fan‐shaped blades. Sequence divergence was unexpectedly low in the marine group, which included species with different morphologies. For the 18S rRNA gene, the phylogenetic analyses produced several clades observed for the rbcL gene sequence analysis, but, due to very little sequence variation, it showed considerably lower resolution for inference at the species and genus levels. Due to the low support of some internal branches, the results of the analyses did not allow an unambiguous clarification of the origin and the early evolution of the Prasiolales.  相似文献   

12.
A hypothesis of phylogenetic relationships inferred by parsimony analysis of plastid-encoded rbcL sequences is presented for red algae containing agar- and carrageenan-like phycocolloids; rbcL encodes the large subunit of ribulose 1,5 bisphosphate carboxylase/oxygenase. Previous studies have shown that Floridean families that contain sulfated galactans as cell wall components are resolved as a monophyletic clade sister to the agarophyte order Ahnfeltiales. Families that have been identified as containing kappa-type carrageenans, often in addition to lambda-type carrageenans, are resolved in three clades: (1) a complex containing the families Solieriaceae, Cystocloniaceae, Hypneaceae, Caulacanthaceae, Tichocarpaceae, Furcellariaceae, and the genera Turnerella and Opuntiella; (2) the Gigartinaceae and Phyllophoraceae, and (3) the genus Endocladia. Except for Tichocarpus and Endocladia, these are all members of the Gigartinales sensu Kylin (1956). Most of the families previously placed in the Cryptonemiales by Kylin appear to contain only lambda-type carrageenans. These fall into two groups, one that clusters with typical carrageenophyte- and the other with typical agarophyte-taxa. The first of these includes the families Polyideaceae, Kallymeniaceae, Dumontiaceae, and Rhizophyllidaceae. The second includes the type family of the Cryptonemiales, the Halymeniaceae, which is divisible into two well-supported clades, one of which possesses special lambda-like carrageenans, the aeodans, and the Schizymeniaceae, a recently created family containing two former gigartinalean genera. The agarophyte orders Gelidiales, Gracilariales and Ceramiales are well resolved as monophyletic clades, but their topological positions are poorly resolved. The Gelidiales and Ceramiales are associated, but the Gracilariales is included in a clade that contains families belonging to the Rhodymeniales, a possible agarophyte order. Finally, two groups that may contain lambda-like carrageenans, the Plocamiales and the Sarcodiaceae, are resolved as separate clades.  相似文献   

13.
The canal-bearing diatom genus Nagumoea, described based on only morphological evidence, was tentatively assigned to the order Bacillariales, although its phylogenetic position remained unclear. Because three isolates of Nagumoea (SK002, SK024 and SK053) were successfully established from Japanese coasts, we performed their morphological observations and molecular phylogenetic analyses to discuss the phylogeny and taxonomic position of this genus. Strains SK002 and SK024 were identified as Nagumoea africana, whereas SK053 conformed with Nagumoea serrata. There was high interspecific divergence between N. africana and N. serrata in the rbcL sequences (8.03–8.17%), indicating their distinctness. Furthermore, intraspecific variations were detected within N. africana (2.35%) in the rbcL, implying its cryptic diversity. The maximum likelihood and Bayesian phylogenetic trees inferred from the plastid rbcL, psbC and nuclear 18S rDNA genes recovered Nagumoea as monophyletic with strong statistical support and embedded within an unresolved, poorly supported lineage containing Achnanthes, Craspedostauros, Staurotropis and Undatella in the canal-bearing order Bacillariales (= the family Bacillariaceae). Although the constrained tree based on the monophyly of Nagumoea and the other canal-bearing clade (Surirellales and Rhopalodiales) was statistically rejected by the topology tests, the phylogenetic position of Nagumoea with other Bacillarialean members remains equivocal. The possession of two plastids positioned fore and aft, observed in the present study, and lack of keel, typical of the Bacillariales, indicate the possibility of Nagumoea being part of the ingroup of the Bacillariales or its closely related outgroup.  相似文献   

14.
15.
Extant genera of Characeae have been assigned to two tribes: Chareae (Chara, Lamprothamnium, Nitellopsis, and Lychnothamnus) and Nitelleae (Nitella and Tolypella), based on morphology of the thallus and reproductive structures. Character analysis of fossil and extant oogonia suggest that Tolypella is polyphyletic, the genus comprising two sections, one in each of the two tribes. Eleven morphological characters and sequence data for the Rubisco large subunit (rbcL) were used to reconstruct the phylogeny of genera, including the two sections of Tolypella. Parsimony analysis of the rbcL data, with all positions and changes weighted equally, strongly supports the monophyly of the Characeae. The two Tolypella sections form a robust monophyletic group basal to the family. Transversion weighting yielded the same tree but with a paraphyletic Tolypella. The rbcL data strongly support monophyly of tribe Chareae but tribe Nitelleae is paraphyletic. Parsimony analysis of morphological data produced one unrooted tree consistent with monophyly of the two tribes; on this tree the Tolypella sections were paraphyletic. Combining morphological with rbcL data did not change the results derived from rbcL sequences alone. The rbcL data support the monophyly of the Characeae and Coleochaete, which together form a monophyletic sister group to embryophytes.  相似文献   

16.
Molecular support for the monophyly of Droseraceae and its phylogenetic relationships to other dicot families was investigated using parsimony analysis of nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL). Analysis of 100 species of plants including families of subclasses Rosidae, Hamamelidae, Dilleniidae, and Caryophyllidae (sensu Cronquist) placed monophyletic Droseraceae in the same clade as Caryophyllidae and Nepenthaceae (Dilleniidae). In a second analysis of 14 species of Droseraceae, 15 caryophyllids, one Nepenthaceae, and three Santalales, a single most-parsimonious tree was found in which Droseraceae are monophyletic, although the position of Drosophyllum as a member of Droseraceae is only weakly supported. The rbcL tree identified four major lineages within genus Drosera: 1) Dionaea; 2) the regia-clade that contains only Drosera regia; 3) the capensis-clade that contains the South African and temperate species outside of Australia; and 4) the peltata-clade that consists of principally Australian endemics. A separate analysis of 14 morphological and phytochemical characters is in general agreement with the rbcL tree except for the placement of Nepenthes, Drosophyllum, and Drosera burmanni. A combined analysis of both data sets places Drosophyllum in a clade with Triphyophyllum (Dioncophyllaceae).  相似文献   

17.
A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid‐like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid‐like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.  相似文献   

18.
Species discrimination within the gigartinalean red algal genus Hypnea has been controversial. To help resolve the controversy and explore phylogeny within the genus, we determined rbcL sequences from 30 specimens of 23 species within the genus, cox1 from 22 specimens of 10 species, and psaA from 16 species. We describe H. caespitosa as a new species characterized by a relatively slender main axis; a pulvinate growth habit with entangled, anastomosing, and subulate uppermost branches; and unilaterally borne tetrasporangial sori. The new species occurs in the warm waters of Malaysia, the Philippines, and Singapore. The phylogenetic trees of rbcL, psaA, and cox1 sequences showed a distant relationship of H. caespitosa to H. pannosa J. Agardh from Baja California and the marked differentiation from other similar species. The rbcL + psaA tree supported monophyly of the genus with high bootstrap values and posterior probabilities. The analysis revealed three clades within the genus, corresponding to three sections, namely, Virgatae, Spinuligerae, and Pulvinatae first recognized by J. G. Agardh. Exceptions were H. japonica T. Tanaka in Pulvinatae and H. spinella (C. Agardh) Kütz. in Spinuligerae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号