首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Physiological mechanisms of muscle activity have been studied in 14 athletes and 15 untrained students during cyclic physical exercises of various intensities, including the individual maximum. The principle of system quantization of behavior has been used to find opposite changes in the spectra of the tachograms of athletes and physically untrained students after the completion of the same physical exercises. It has been shown that, after cyclic physical load in trained and untrained subjects, opposite changes in the effectiveness of their testing activity occur.  相似文献   

2.
Standard parameters of external respiration at the aerobic–anaerobic transition and above the anaerobic (ventilatory) threshold (AT) were studied in highly trained athletes during an incremental treadmill test. The efficiency of the adaptive response (AR) was inferred from changes in the heart rate and VO2gradients beyond the AT. Several AR types differing in the efficiency of the AT to the physical load were identified. The most efficient AR was associated with a decrease in the heart rate gradient and an increase in the VO2gradient above the AT. The least efficient AR was associated with an increase in the heart rate gradient and a decrease in the VO2gradient above the AT. The efficiency of the AR to cyclic muscular load varies daily in individual athletes.  相似文献   

3.
On the basis of the literature and original data, heart rate variability (HRV) in weightlifters has been studied. The results showed that the distribution mode (a parameter of mathematical analysis that is equal to the most frequent length of RR intervals) indicates the intensity of physical exercise. Specific changes in the autonomic balance in athletes as dependent on their degree of training and sports qualification are important characteristics of adaptations to physical loads. For example, the degree of training of weightlifters is reflected by the level of the respiratory component as an index of the activity of the parasympathetic nervous system. Adaptation to physical exercise leads to an increase in the power of the spectrum of neurohumoral modulation and to changes in the ratio between the levels of the total spectral power of HRV.  相似文献   

4.

Background

We have developed an exercise machine prototype for increasing exercise intensity by means of passively exercising lower limb muscles. The purpose of the present study was to compare the passive exercise intensity of our newly-developed machine with the intensities of different types of exercises. We also attempted to measure muscle activity to study how these forms of exercise affected individual parts of the body.

Methods

Subjects were 14 healthy men with the following demographics: age 30 years, height 171.5 cm, weight 68.3 kg. They performed 4 types of exercise: Passive weight-bearing lower limb exercise (PWLLE), Simulated horse riding exercise (SHRE), Bicycle exercise, and Walking exercise, as described below at an interval of one week or longer. Oxygen uptake, blood pressure, heart rate, and electromyogram (EMG) were measured or recorded during exercise. At rest prior to exercise and immediately after the end of each exercise intensity, the oxygenated hemoglobin levels of the lower limb muscles were measured by near-infrared spectroscopy to calculate the rate of decline. This rate of decline was obtained immediately after exercise as well as at rest to calculate oxygen consumption of the lower limb muscles as expressed as a ratio of a post-exercise rate of decline to a resting one.

Results

The heart rate and oxygen uptake observed in PWLLE during maximal intensity were comparable to that of a 20-watt bicycle exercise or 2 km/hr walking exercise. Maximal intensity PWLLE was found to provoke muscle activity comparable to an 80-watt bicycle or 6 km/hr walking exercise. As was the case with the EMG results, during maximal intensity PWLLE, the rectus femoris muscle consumed oxygen in amounts identical to that of an 80-watt bicycle or a 6 km/hr walking exercise.

Conclusion

Passive weight-bearing lower limb exercise using our trial machine could provide approximately 3 MET of exercise and the thigh exhibited muscle activity equivalent to that of 80-watt bicycle or 6 km/hr walking exercise. Namely, given the same oxygen uptake, PWLLE exceeded bicycle or walking exercise in muscle activity, thus PWLLE is believed to strengthen muscle power while reducing the load imposed on the cardiopulmonary system.
  相似文献   

5.
Changes in the kinetics of aerobic and anaerobic metabolism were studied in 26 highly profiled athletes performing bicycle ergometer exercise. The different intensity exercise sessions included those with a critical intensity corresponding to the maximum oxygen consumption up to value of the maximum anaerobic intensity of about 10 MMR units. The maximal aerobic metabolism was maintained in the exercises with a relative intensity of 1.0 to 2.5 MMR units. At the higher values of the exercise relative intensity, the oxygen current consumption exponentially decreased. An increase in the rate of anaerobic glycolytic energy production, which was first recorded at the threshold of anaerobic metabolism (W AT = 0.5 MMR units), increased linearly with a further increase in the exercise relative intensity up to the level of the exhaustion intensity (W ex = 4.7 MMR units). A sharp increase in the rate of an alactic anaerobic process was found at the relative intensity values of 2.5 MMR units, and this increase grew linearly up to values of the maximal anaerobic intensity (W max = 9.5 MMR units).  相似文献   

6.
Cardiovascular adaptations to exercise training in the elderly   总被引:1,自引:0,他引:1  
Maximal O2 uptake (VO2max) and left ventricular function decrease with age. Endurance exercise training of sufficient intensity, frequency, and duration increases VO2max in the elderly. The mechanisms underlying the increased VO2max in the elderly are enhanced O2 extraction of trained muscle during maximal exercise leading to a wider arteriovenous O2 difference, and higher cardiac output in the trained state. However, increased cardiac output during true maximal exercise has not been documented in elderly subjects. Endurance exercise training results in a lower heart rate and rate pressure product during submaximal exercise at a given intensity. However, no improvement in left ventricular function has been reported in the elderly after exercise training. Highly trained master athletes exhibit proportional increases in the left ventricular end-diastolic dimension and wall thickness suggestive of volume-overload hypertrophy compared with age-matched sedentary controls. The magnitude of left ventricular enlargement is similar to that in young athletes. The failure of exercise training to alter the age-related deterioration of left ventricular function in the elderly may reflect an insufficient training stimulus rather than the inability of the heart to adapt to training in elderly subjects.  相似文献   

7.
We sought to determine the cardiovascular responses to increasing exercise intensities in postmenopausal women with different physical activity levels and hormone replacement therapy (HRT) status. Forty-four women (11 sedentary, 19 physically active, 14 master athletes; 24 not on HRT, 20 on HRT) completed treadmill exercise at 40, 60, 80, and 100% of maximal oxygen consumption. Oxygen consumption, heart rate, blood pressure, and cardiac output, determined via acetylene rebreathing, were measured at each exercise intensity. HRT did not affect cardiovascular hemodynamics. Stroke volume (SV) decreased significantly between 40 and 100% of maximal oxygen consumption in all groups, and the decrease did not differ among groups. The greater oxygen consumption of the athletes at each intensity was due to their significantly greater cardiac output, which was the result of a significantly greater SV, compared with both of the less active groups. The athletes had significantly lower total peripheral resistance at each exercise intensity than did the two less active groups. There were no consistent significant hemodynamic differences between the physically active and sedentary women. These results indicate that SV decreases in postmenopausal women as exercise intensity increases to maximum, regardless of their habitual physical activity levels or HRT status.  相似文献   

8.
This study was designed to measure the electroencephalogram (EEG) after exercise with increasing intensity. In a field test with increments in running velocity a 2-min EEG was recorded, together with blood lactate concentration and heart rate, after each stage. An individual protocol was used, with up to six stages of running to ensure comparability of exercise intensity among the subjects, in each of 19 athletes (17 men, 2 women) experienced in leisure-time running. The exercise consisted initially of three running stages of aerobic exercise intensity without blood lactate accumulation followed by stages with an increase of lactate concentration. The protocol of the field test led to a progressive increase in cortical activity directly after the stages without blood lactate accumulation mainly in the δ frequency band, followed by θ and α-1 frequency band, and less pronounced in the α-2 and in the β frequency bands. After the stages with an onset and further increase of blood lactate accumulation significant decreases in the β-2, β-1 and α-1 frequency bands occurred predominantly in temporal (T3, T4, T5, and T6) and occipital (O1, and O2) electrode positions, indicating a stage-by-stage decrease of activity. This decrease may be explained by feed-back from working muscle, via afferents to the cortex from intero- and proprio-receptors and affective processes. This could suggest that through a higher running intensity indicated by an onset of blood lactate accumulation metabolic and mechanical changes led to alterations within the afferent systems influencing the level of cortical activity. Accepted: 9 February 1998  相似文献   

9.
Endurance training aiming at eliciting further increase of physical performance of competitive athletes demands serious time and intensity constraints. In addition, very high intensity training could lead to "over-loading" frequently associated with increased concentration of plasma lactate after maximum intensity exercise and proteinuria. We hypothesized that a newly available complex dietary (CD) supplement by providing the necessary substances and cofactors for increased tissue metabolism would reduce the increase in plasma lactate concentration and proteinuria after maximum intensity exercise in swimmers undergoing high intensity training and exercise (70 km/week, for 6 weeks) period. Subjects involved in the investigation were junior swimmers (n = 10). Data were collected four times during the third macrocycle of training; 1st: before, 2nd: after 10 days and 3rd: 14 days after withdrawal of CD-supplement, whereas 4th: after 10 days of placebo treatment. The study was a double-blinded random controlled investigation. In the first period, plasma lactate concentration was 8.4 +/- 2.1 mmol/l, whereas protein level in the urine was 8.9 +/- 5.8 mg/l. After use of CD-supplement plasma lactate concentration significantly decreased to 5.5 +/- 1.9 mmol/l and proteinuria decreased to 1.3 +/- 2.1 mg/l (p<0.05). Importantly, the intensity and the volume of the training did not change during the observation period. Thus, use of CD-supplement significantly reduced the increase in plasma lactate and proteinuria after maximum intensity exercise in athletes (swimmers) undergoing high endurance training despite maintained training load. We propose that the special components of CD-supplement support the mechanisms responsible for lactate elimination and reduction of protein catabolism and/or increase of protein reabsorption. These adaptations are likely to allow the athletes to undergo higher intensity training resulting in greater performance.  相似文献   

10.
The purpose of this study was to investigate the hypothesis that changes in physiological responses during arm-cranking exercise using electrical stimulation of the leg muscles (ACE-ES) compared to arm-cranking exercise alone (ACE) in able-bodied subjects (ABS) are based on an increase in active muscle mass rather than the enhancing effect of the leg muscle pump. In ABS the sympathetic nervous system induced vasoconstriction and activity of the leg muscle pump are intact, therefore, a normal redistribution of blood takes place during exercise. Consequently, ES should have no additional effect on the redistribution of blood in these ABS during exercise and, thus, changes in physiological responses will be based on an increase in active muscle mass. A group of 11 ABS performed three maximal arm-cranking tests. In the first test peak power output (PO peak) was determined. The other tests were both submaximal and maximal ACE, once with ACE-ES and once with ACE. The PO peak was not significantly different between ACE-ES and ACE. Oxygen uptake (O2) increased significantly during ACE-ES compared to ACE. Cardiac output (), stroke volume (SV), heart rate and ventilation were not significantly different during ACE-ES compared to ACE. Respiratory exchange ratios were significantly lower during ACE-ES compared to ACE at 60% PO peak and at maximal exercise. In conclusion, ACE-ES caused significant increases in O2 with a lack of elevation in and SV during submaximal and maximal exercise in ABS. The results of this study suggest that changes in physiological responses during ACE-ES are based on an increase in the active muscle mass rather than stimulation of the leg muscle pump. Accepted: 6 August 1996  相似文献   

11.
In this study we explored the effects of physical training on the response of the respiratory system to exercise. Eight subjects with irreversible mild-to-moderate airflow obstruction [forced expiratory volume in 1 s of 85 +/- 14 (SD) % of predicted and ratio of forced expiratory volume in 1 s to forced vital capacity of 68 +/- 5%] and six normal subjects with similar anthropometric characteristics underwent a 2-mo physical training period on a cycle ergometer three times a week for 31 min at an intensity of approximately 80% of maximum heart rate. At this work intensity, tidal expiratory flow exceeded maximal flow at control functional residual capacity [FRC; expiratory flow limitation (EFL)] in the obstructed but not in the normal subjects. An incremental maximum exercise test was performed on a cycle ergometer before and after training. Training improved exercise capacity in all subjects, as documented by a significant increase in maximum work rate in both groups (P < 0.001). In the obstructed subjects at the same level of ventilation at high workloads, FRC was greater after than before training, and this was associated with an increase in breathing frequency and a tendency to decrease tidal volume. In contrast, in the normal subjects at the same level of ventilation at high workloads, FRC was lower after than before training, so that tidal volume increased and breathing frequency decreased. These findings suggest that adaptation to breathing under EFL conditions does not occur during exercise in humans, in that obstructed subjects tend to increase FRC during exercise after experiencing EFL during a 2-mo strenuous physical training period.  相似文献   

12.
The objective of this study was to establish differences in vagal reactivation, through heart rate recovery and heart rate variability post exercise, in Brazilian jiu-jitsu wrestlers (BJJW). A total of 18 male athletes were evaluated, ten highly trained (HT) and eight moderately trained (MT), who performed a maximum incremental test. At the end of the exercise, the R-R intervals were recorded during the first minute of recovery. We calculated heart rate recovery (HRR60s), and performed linear and non-linear (standard deviation of instantaneous beat-to-beat R-R interval variability – SD1) analysis of heart rate variability (HRV), using the tachogram of the first minute of recovery divided into four segments of 15 s each (0-15 s, 15-30 s, 30-45 s, 45-60 s). Between HT and MT individuals, there were statistically significant differences in HRR60s (p <0.05) and in the non linear analysis of HRV from SD130-45s (p <0.05) and SD145-60s (p <0.05). The results of this research suggest that heart rate kinetics during the first minute after exercise are related to training level and can be used as an index for autonomic cardiovascular control in BJJW.  相似文献   

13.
Eight highly trained male kayakers were studied to determine the relationship between critical power (CP) and the onset of blood lactate accumulation (OBLA). Four exercise sessions of 90 s, 240 s, 600 s, and 1200 s were used to identify the CP of each kayaker. Each individual CP was obtained from the line of best fit (LBFCP) obtained from the progressive work output/time relationships. The OBLA was identified by the 4 mmol·l–1 blood lactate concentration and the work output at this level was determined using a lactate curve test. This consisted of paddling at 50 W for 5 min after which a 1-min rest was taken during which a 25-l blood sample was taken to analyse for lactate. Exercise was increased by 50 W every 5 min until exhaustion, with the blood sample being taken in the 1-min rest period. The exercise intensity at the OBLA for each subject was then calculated and this was compared to the exercise intensity at the LBFCP. The intensity at LBFCP was found to be significantly higher (t=2.115, P<0.05) than that at the OBLA of 4 mmol·1–1. These results were further confirmed by significant differences being obtained in blood lactate concentration (t=8.063, P<0.05) and heart rate values (t=2.90, P<0.05) obtained from the exercise intensity at LBFCP over a 20-min period and that of the anaerobic threshold (Than) parameters obtained from the lactate/heart rate curve. These differences suggest that CP and Than are different physiological events and that athletes have utilised either one or the other methods for monitoring training and its effects.  相似文献   

14.
15.
The purpose of this study was to examine the association among electromyographic (EMG) activity, recovery blood flow, and the magnitude of the autonomic adjustments to rhythmic exercise in humans. To accomplish this, 10 healthy subjects (aged 23-37 y) performed rhythmic handgrip exercise for 2 min at 5, 15, 25, 40, and 60% of maximal voluntary force. Heart rate and arterial blood pressure were measured at rest (control), during each level of exercise, and for 2 min following exercise (recovery). The rectified, filtered EMG activity of the exercising forearm was measured continuously during each level of exercise and was used as an index of the level of central command. Post-exercise hyperemia was calculated as the difference between the control and the average recovery (2 min) forearm blood flows (venous occlusion plethysmography) and was examined as a possible index of the stimulus for muscle chemoreflex activation. Heart rate, arterial pressure, forearm EMG activity, and post-exercise hyperemia all increased progressively with increasing exercise intensity. The magnitudes of the increases in heart rate and arterial pressure from control to exercise were directly related to both the level of EMG activity and the degree of post-exercise hyperemia across the five exercise intensities (delta heart rate vs EMG activity: r = 0.99; delta arterial pressure vs EMG activity: r = 0.99; delta heart rate vs hyperemia: r = 0.99; and delta arterial pressure vs hyperemia: r = 0.98; all p less than 0.01). Furthermore, the level of EMG activity was directly related (r = 0.99) to the corresponding degree of hyperemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Some nonlinear characteristics of heart rate variability in the course of functional tests with physical exercise are described. Two groups of volunteers participated in the tests: a control group of 32 healthy subjects (group 1) and a group of 35 coronary heart disease (CHD) patients (group 2). Two series of experiments were performed for each group. An active orthostatic test (AOT) was used in the first series, and a gradually growing physical load on a bicycle ergometer (bicycle ergometer test, BET), in the second series. Along with statistical indices of heart rate (the mean RR interval and standard deviation), nonlinear indices of heart rate were estimated: the correlation dimensionality (D 2) and approximate entropy (ApEn). Trends of the changes in nonlinear indices of heart rate have been found. The D 2 and ApEn decreased in both groups of subjects during the AOT and BET under the maximum load. However, the groups of healthy subjects and CHD patients differed in the reactivity of indices, the amplitude of changes in nonlinear indices being narrower in the latter group than in group 1. Differently directed shifts in standard deviation (SDNN) and nonlinear indices have been found. Thus, the data obtained with the use of nonlinear heart rate characteristics show that heart rate under physical load is more multivariate and diverse in healthy subjects at rest and the amplitude of changes during the AOT and BET is greater than in CHD patients, which is a result of the specific autonomic control of heart activity in cardiovascular pathologies.  相似文献   

17.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The structural and functional characteristics of the heart of 51 retired soccer players who ceased training 3–15 years ago are presented. A number of structural and functional signs of “athlete’s heart” detected in the subjects indicate more efficient heart functioning at rest and during exercise. The myocardium requires less oxygen per unit power of muscle work, and each gram of the myocardium of retired athletes performs more mechanical work than the myocardium of untrained subjects of the same age. This indicates long-term adaptation of the heart of retired athletes to muscle work. The heart functioning at rest and during exercise in retired athletes becomes less efficient with age, this trend being more pronounced in older former athletes than in younger ones. This is expressed in an increased oxygen consumption by the myocardium, a higher occurrence of atypical electrocardiogram patterns, age-related changes in myocardial contractility, and a decreased capacity of each gram of the myocardium for generating mechanical work.  相似文献   

19.
Aerobic exercise training is associated with adaptive changes in skeletal muscles and their vascular bed; such changes in individual muscles may vary depending on their characteristics and recruitment. This study was aimed at comparing the effects of eight-week treadmill training on the locomotor and respiratory muscles in rats. The training course increased the aerobic performance in rats, which was evidenced by an increase in maximum O2 consumption and a decrease in the blood lactate concentration in ramp test. The succinate dehydrogenase activity was increased in the red portion of the gastrocnemius muscle, but not in the diaphragm of trained rats. Arterial segments were isolated from feed arteries and studied by wire myography. The relaxation in response to acetylcholine in gastrocnemius arteries in trained animals was higher as compared with controls (due to higher NO production), while contractile responses to noradrenaline (in the presence of propranolol) were not changed. On the contrary, the endothelial function of diaphragm arteries was not affected by training, but contractile responses to activation of α-adrenoceptors were markedly increased. Thus, aerobic training may increase the blood supply rate to both locomotor and respiratory muscles, but the underlying regulatory mechanisms are different. The results obtained allow us to reveal the physiological mechanisms that determine the physical performance of the body under conditions of compromised functioning of the respiratory system.  相似文献   

20.
The instantaneous heart rate (HR) characterizing the escape of the cardiac muscle from autonomic control is determined by analyzing a mathematical model of the variation of R-R intervals obtained during an exercise test. The relationship between the escaping HR and cyclic exercise intensity determines the possibility of using this criterion for dynamic monitoring of the functional state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号