首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.  相似文献   

2.
Solar ultraviolet (UV) radiation-induced oxidative stress has been implicated in various skin diseases. Here, we report the photoprotective effect of grape seed proanthocyanidins (GSPs) on UV-induced oxidative stress and activation of mitogen-activated protein kinase (MAPK) and NF-kappaB signaling pathways using normal human epidermal keratinocytes (NHEK). Treatment of NHEK with GSPs inhibited UVB-induced hydrogen peroxide (H2O2), lipid peroxidation, protein oxidation, and DNA damage in NHEK and scavenged hydroxyl radicals and superoxide anions in a cell-free system. GSPs also inhibited UVB-induced depletion of antioxidant defense components, such as glutathione peroxidase, catalase, superoxide dismutase, and glutathione. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of GSPs on these pathways. Treatment of NHEK with GSPs inhibited UVB-induced phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family at the various time points studied. As UV-induced H2O2 plays a major role in activation of MAPK proteins, NHEK were treated with H2O2 with or without GSPs and other known antioxidants, viz. (-)-epigallocatechin-3-gallate, silymarin, ascorbic acid, and N-acetylcysteine. It was observed that H2O2-induced phosphorylation of ERK1/2, JNK, and p38 was decreased by these antioxidants. Under identical conditions, GSPs also inhibited UVB-induced activation of NF-kappaB/p65, which was mediated through inhibition of degradation and activation of IkappaBalpha and IKKalpha, respectively. Together, these results suggest that GSPs could be useful in the attenuation of UV-radiation-induced oxidative stress-mediated skin diseases in human skin.  相似文献   

3.
4.
Exposure to UVB results in formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts in DNA. These can be quantified by a variety of techniques including alkaline gel electrophoresis, ELISAs, Southwestern blotting, and immunohistochemistry. Damage to DNA results in activation of damage response pathways, as indicated by Western blotting using antibodies specific for p53 and breast cancer-associated gene 1 (BRCA1) phosphorylation. The signal from DNA damage to activation of these response pathways appears to be mediated by FKBP12-rapamycin-associated protein (FRAP), since these phosphorylation events are blocked by rapamycin. UVB-induced DNA damage also leads to induction of immunosuppressive cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-10 in skin. Induction of TNF-alpha by UVB is readily detectable in cultured normal human epidermal keratinocytes (NHEKs) using ELISA, while induction of IL-10 is readily detectable in cultured mouse keratinocytes but not in NHEKs. Induction of DNA damage by liposome-encapsulated HindIII results in induction of immunosuppressive responses similar to UVB. Clinical testing shows that liposome-encapsulated T4 endonuclease V or photolyase stimulates repair of CPDs in the skin of human subjects, and prevents UVB-induced immunosuppression. Stimulation of repair and prevention of immunosuppression have been linked to prevention of skin cancer by liposome-encapsulated T4 endonuclease V in repair-deficient xeroderma pigmentosum patients.  相似文献   

5.
Solar ultraviolet radiation (UV) is a major cause of non-melanoma skin cancer in humans. Photochemoprevention with natural products represents a simple but very effective strategy in the management of cutaneous neoplasia. The study investigated the protective activity of Calluna vulgaris (Cv) and red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on UVB-induced deleterious effects in SKH-1 mice skin. Forty SKH-1 mice were randomly divided into 4 groups (n=10): control, UVB irradiated, Cv + UVB irradiated, BM+UVB irradiated. Both extracts were applied topically on the skin in a dose of 4 mg/40 μl/cm(2) before UVB exposure - single dose. The effects were evaluated in skin 24 hours after irradiation through the presence of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 levels. The antioxidant activity of BM extract was higher than those of Cv extract as determined using stable free radical DPPH assay and ABTS test. One single dose of UVB generated formation of CPDs (p<0.0001) and sunburn cells (p<0.0002) and increased the cytokine levels in skin (p<0.0001). Twenty hours following irradiation BM extract inhibited UVB-induced sunburn cells (p<0.02) and CPDs formation (p<0.0001). Pretreatment with Cv and BM extracts resulted in significantly reduced levels of IL-6 and TNF-α compared with UVB alone (p<0.0001). Our results suggest that BM extracts might be a potential candidate in preventing the damages induced by UV in skin.  相似文献   

6.
During evolution, placental mammals appear to have lost cyclobutane pyrimidine dimer (CPD) photolyase, an enzyme that efficiently removes UV-induced CPDs from DNA in a light-dependent manner. As a consequence, they have to rely solely on the more complex, and for this lesion less efficient, nucleotide excision repair pathway. To assess the contribution of poor repair of CPDs to various biological effects of UV, we generated mice expressing a marsupial CPD photolyase transgene. Expression from the ubiquitous beta-actin promoter allowed rapid repair of CPDs in epidermis and dermis. UV-exposed cultured dermal fibroblasts from these mice displayed superior survival when treated with photoreactivating light. Moreover, photoreactivation of CPDs in intact skin dramatically reduced acute UV effects like erythema (sunburn), hyperplasia and apoptosis. Mice expressing the photolyase from keratin 14 promoter photo reactivate CPDs in basal and early differentiating keratinocytes only. Strikingly, in these animals, the anti-apoptotic effect appears to extend to other skin compartments, suggesting the presence of intercellular apoptotic signals. Thus, providing mice with CPD photolyase significantly improves repair and uncovers the biological effects of CPD lesions.  相似文献   

7.
Ultraviolet radiation is a well established epidemiologic risk factor for malignant melanoma. This observation has been linked to the relative resistance of normal melanocytes to ultraviolet B (UVB) radiation-induced apoptosis, which consequently leads to accumulation of UVB radiation-induced DNA lesions in melanocytes. Therefore, identification of physiologic factors regulating UVB radiation-induced apoptosis and DNA damage of melanocytes is of utmost biological importance. We show that the neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) blocks UVB radiation-induced apoptosis of normal human melanocytes in vitro. The anti-apoptotic activity of alpha-MSH is not mediated by filtering or by induction of melanin synthesis in melanocytes. alpha-MSH neither leads to changes in the cell cycle distribution nor induces alterations in the expression of the apoptosis-related proteins Bcl(2), Bcl(x), Bax, p53, CD95 (Fas/APO-1), and CD95L (FasL). In contrast, alpha-MSH markedly reduces the formation of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers, ultimately leading to reduced apoptosis. The reduction of UV radiation-induced DNA damage by alpha-MSH appears to be related to induction of nucleotide excision repair, because UV radiation-mediated apoptosis was not blocked by alpha-MSH in nucleotide excision repair-deficient fibroblasts. These data, for the first time, demonstrate regulation of UVB radiation-induced apoptosis of human melanocytes by a neuropeptide that is physiologically expressed within the epidermis. Apart from its ability to induce photoprotective melanin synthesis, alpha-MSH appears to exert the capacity to reduce UV radiation-induced DNA damage and, thus, may act as a potent protection factor against the harmful effects of UV radiation on the genomic stability of epidermal cells.  相似文献   

8.
9.
BACKGROUND: The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relative contribution of CPDs and 6-4PPs to these biological consequences of UV exposure is hardly known. Because placental mammals have undergone an evolutionary loss of photolyases, repair enzymes that directly split CPDs and 6-4PPs into the respective monomers in a light-dependent and lesion-specific manner, they can only repair UV-induced DNA damage by the elaborate nucleotide excision repair pathway. RESULTS: To assess the relative contribution of CPDs and 6-4PPs to the detrimental effects of UV light, we generated transgenic mice that ubiquitously express CPD-photolyase, 6-4PP-photolyase, or both, thereby allowing rapid light-dependent repair of CPDs and/or 6-4PPs in the skin. We show that the vast majority of (semi)acute responses in the UV-exposed skin (i.e., sunburn, apoptosis, hyperplasia, and mutation induction) can be ascribed to CPDs. Moreover, CPD-photolyase mice, in contrast to 6-4PP-photolyase mice, exhibit superior resistance to sunlight-induced tumorigenesis. CONCLUSIONS: Our data unequivocally identify CPDs as the principal cause of nonmelanoma skin cancer and provide genetic evidence that CPD-photolyase enzymes can be employed as effective tools to combat skin cancer.  相似文献   

10.
Acute irreparable UV-induced DNA damage leads to apoptosis of epidermal keratinocytes (KC) and the formation of sunburn cells, whereas less severely damaged cells survive but harbor the potential of tumor formation. Here we report that hepatocyte growth factor/scatter factor (HGF/SF) prevents UVB-induced apoptosis in primary KC cultured in vitro. When we analyzed the signaling pathways initiated by the HGF/SF receptor c-met, we found that the phosphatidylinositol (PI) 3-kinase and its downstream-element AKT and the mitogen-activated protein (MAP) kinase were activated. Inhibition of PI 3-kinase led to a complete abrogation of the anti-apoptotic effect of HGF/SF, whereas blockade of the MAP kinase pathway had no effect. In contrast to the observation with primary KC, HGF/SF could not enhance survival after UVB irradiation of HaCaT and A431 cell lines, despite the fact that in these cells the PI 3-kinase and MAP kinase pathways were also activated by HGF/SF. Cell cycle analysis of KC revealed a G(2)/M arrest after UVB irradiation and a complete loss of proliferating cells. Because HGF/SF in the skin is produced by dermal fibroblasts, our findings suggest that the HGF/SF-mediated rescue of KC from apoptosis represents an important paracrine loop by which UVB-damaged KC can be kept alive to maintain the epidermal barrier function but cannot further proliferate, thereby preventing the induction of epithelial skin tumors.  相似文献   

11.
Induction of DNA damage by solar UV radiation is a key event in the development of skin cancers. Bipyrimidine photoproducts, including cyclobutane pyrimidine dimers (CPDs), (6-4) photoproducts (64 PPs) and their Dewar valence isomers, have been identified as major UV-induced DNA lesions. In order to identify the predominant and most persistent lesions, we studied the repair of the three types of photolesions in primary cultures of human keratinocytes. Specific and quantitative data were obtained using HPLC associated with tandem mass spectrometry. As shown in other cell types, 64 PPs are removed from UVB-irradiated keratinocytes much more efficiently than CPDs. In contrast, CPDs are still present in high amounts when cells recover their proliferation capacities after cell cycle arrest and elimination of a part of the population by apoptosis. The predominance of CPDs is still maintained when keratinocytes are exposed to a combination of UVB and UVA. Under these conditions, 64 PPs are converted into their Dewar valence isomers that are as efficiently repaired as their (6-4) precursors. Exposure of cells to pure UVA radiation generates thymine cyclobutane dimers that are slightly less efficiently repaired than CPDs produced upon UVB irradiation. Altogether, our results show that CPDs are the most frequent and the less efficiently repaired bipyrimidine photoproducts irrespectively of the applied UV treatment.  相似文献   

12.
For many years, zinc salts have been used both topically and orally to treat minor burns and abrasions as well as to enhance wound repair in man and animals. In this study we describe the protective effects of zinc against UV-induced genotoxicity in vitro and against sunburn cell formation in mouse skin in vivo. Cultured skin cells from neonatal mice showed a dramatic increase in the number of micronuclei as a result of UVA and UVB irradiation. Inclusion of zinc at 5 μg/mL in the medium significantly reduced the frequency of micronuclei and of micronucleated cells. In hairless mice, topical application of zinc chloride for 5 consecutive days or a single application 2 h prior to UV exposure reduced the number of sunburn cells in the epidermis as did application of zinc 1 h after exposure. Application 2 h after irradiation also tended to have a protective effect, although there was a large variation between animals. It is proposed that an influx of zinc can protect epidermal cells against some of the more delayed effects of UV-induced damage.  相似文献   

13.
Exposure to ultraviolet (UV) radiation from sunlight accounts for 90% of the symptoms of premature skin aging and skin cancer. The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome and in a spectrum of epithelial cancers whose etiology suggests a cooperation with environmental insults. Here we analyzed the role of LKB1 in a UV-dependent mouse skin cancer model and show that LKB1 haploinsufficiency is enough to impede UVB-induced DNA damage repair, contributing to tumor development driven by aberrant growth factor signaling. We demonstrate that LKB1 and its downstream kinase NUAK1 bind to CDKN1A. In response to UVB irradiation, LKB1 together with NUAK1 phosphorylates CDKN1A regulating the DNA damage response. Upon UVB treatment, LKB1 or NUAK1 deficiency results in CDKN1A accumulation, impaired DNA repair and resistance to apoptosis. Importantly, analysis of human tumor samples suggests that LKB1 mutational status could be a prognostic risk factor for UV-induced skin cancer. Altogether, our results identify LKB1 as a DNA damage sensor protein regulating skin UV-induced DNA damage response.  相似文献   

14.
Sun exposure is responsible for detrimental damage ranging from sunburn to photoaging and skin cancer. This damage is likely to be influenced by constitutive pigmentation. The relationship between ultraviolet (UV) sensitivity and skin color type was analyzed on 42 ex vivo skin samples objectively classified from light to dark skin, based on their values of individual typology angle (ITA) determined by colorimetric parameters. The biologically efficient dose (BED) was determined for each sample by quantifying sunburn cells after exposure to increasing doses of UV solar-simulated radiation. Typical UV-induced biologic markers, other than erythema, such as DNA damage, apoptosis and p53 accumulation, were analyzed. A statistically significant correlation was found between ITA and BED and, ITA and DNA damage. Interestingly, DNA lesions were distributed throughout the whole epidermal layers and the uppermost dermal cells in light, intermediate and tanned skin while they were restricted to suprabasal epidermal layers in brown or dark skin. Our data support, at the cellular level, the relationship between UV sensitivity and skin color type. They emphasize the impact of DNA damage accumulation in basal layer in relation to the prevalence of skin cancer.  相似文献   

15.
Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK). Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD), in NHEK exposed to UVB (20 mJ/cm2). In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL) mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.  相似文献   

16.
Many studies have shown that DNA mismatch repair (MMR) has a role beyond that of repair in response to several types of DNA damage, including ultraviolet radiation (UV). We have demonstrated previously that the MMR-dependent component of UVB-induced apoptosis is integral to the suppression of UVB-induced tumorigenesis. Here we demonstrate that Msh6-dependent UVB-induced apoptotic pathway is both activated via the mitochondria and p53-independent. In addition, we have shown for the first time that caspase 2, an initiator caspase, localizes to the centrosomes in mitotic primary mouse embryonic fibroblasts, irrespective of MMR status and UVB treatment.  相似文献   

17.
Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear. Using a series of photolyase-transgenic mice to ubiquitously remove either CPDs or 6-4PPs from all cells in the mouse skin or selectively from basal keratinocytes, we show that the majority of UV-induced acute effects to require the presence of CPDs in basal keratinocytes in the mouse skin. At the fundamental level of gene expression, CPDs induce the expression of genes associated with repair and recombinational processing of DNA damage, as well as apoptosis and a response to stress. At the organismal level, photolyase-mediated removal of CPDs, but not 6-4PPs, from the genome of only basal keratinocytes substantially diminishes the incidence of skin tumors; however, it does not affect the UVB-mediated immunosuppression. Taken together, these findings reveal a differential role of basal keratinocytes in these processes, providing novel insights into the skin's acute and chronic responses to UV in a lesion- and cell-type-specific manner.  相似文献   

18.
The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer.  相似文献   

19.
20.
Ultraviolet (UV) exposure induces an up-regulation of melanocortin-1 receptor (MC1R) expression in human skin and the alpha-melanocyte-stimulating hormone (alpha-MSH) may reduce UVB-induced DNA damage in normal human melanocytes. Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of DNA lesions in UVB-irradiated HaCaT cells stably transfected with the wild type MC1R gene (HaCaT-MC1R). Similar levels of 8 bipyrimidine photoproducts including cyclobutane pyrimidine dimers (CPDs) (T<>T, T<>C, C<>T), (6-4) photoproducts ((6-4)PPs) (TT-(6-4)PPs, TC-(6-4)PPs) and their Dewar valence isomers together with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were found to be generated in both non-transfected and HaCaT-MC1R cells after UVB exposure. Time-course studies of DNA photoproduct yields indicated that the DNA repair ability depended upon radiation doses. It was shown that (6-4)PPs were removed from the DNA of UVB-irradiated cells much more efficiently than CPDs. The repair efficiency of 8-oxodGuo, CPDs and (6-4)PPs was relatively similar in both cell lines and was not modified by stimulation with alpha-MSH before UVB-exposure. In conclusion, cell surface-enforced expression of MC1Rs on HaCaT keratinocytes and alpha-MSH stimulation do not affect the formation of UVB-induced DNA photoproducts and their subsequent repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号