首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After a prolonged period of red light the formation of a new whorl of lateral hairs can be induced inAcetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva) by a pulse of blue light. It has previously been shown that the response to blue light obeys the law of reciprocity. In this paper we demonstrate that the responses to blue light are additive only within 10 min after the onset of blue-light treatment, since the responsiveness of the cells is also affected by blue light. One hour after a short blue-light pulse the response to a second blue-light pulse has come to a minimum. After that, the responsiveness is restored in a refractory period of several hours. The fluenceresponse curves for hair-whorl formation at the time of minimum responsiveness are shifted parallel to the original fluence-response curves without preirradiation. Again, the law of reciprocity applies. This indicates an increased light requirement only for the same degree of hair-formation response. The sensitivity to blue light of the reduction of responsiveness response is higher by a factor of about 50 than the induction of hairformation response.  相似文献   

2.
N. Roth-Bejerano 《Planta》1980,149(3):252-256
The attachment of glycolate oxidase to the peroxisomal fraction derived from etiolated barley leaves (Hordeum vulgare L. cr. Dvir) is affected by light. The effect of red irradiation is reversed by subsequent far-red irradiation, indicating the involvement of phytochrome. This phytochrome effect is assumed to be related to phytochrome binding. Indeed, prevention by filipin (1.2·10-6 mol g-1 f wt) or cholesterol of phytochrome binding to membranes abolishes the effect of light on the interaction between glycolate oxidase and the peroxisomal fraction. Glycolate oxidase binding is affected by addition of quasi-ionophores such as gramicidin and filipin at a concentration of 0.6·10-3 mol g-1 f wt. This fact indicates that peroxisome-glycolate oxidase interaction may be affected by membrane potential. Since both ion transport and membrane potential are known to be affected by phytochrome, it is proposed that phytochrome acts in the light-induced modulation of glycolate oxidase attachment as a quasi-ionophore.Abbreviations GO glycolate oxidase - Pr and Pfr phytochrome forms absorbing in red and far-red, respectively - R and F red and far-red irradiation - Cumulative 20 Kp 20,000 g pellet obtained by centrifugation of the crude extract - 1 Kp 1,000 g pellet - 20 Kp 20,000 g pellet, obtained by centrifugation of 1 Kp supernatant - 1 Kp, 20 Kp and cumulative 20 Kp pellets obtained after density centrifugation through a sucrose cushion  相似文献   

3.
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.Abbreviations FR far-red light - WL white light - PAR photosynthetically active radiation - Pfr far-red light absorbing form of phytochrome - Pr red light absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr) - Pfr/Pfr+Pr - SAN 9789 4-chloro-5-(methylamino) 2(,, trifluoro-m tolyl)-3(2H)-pyridazinone  相似文献   

4.
W. Pfaff  P. Schopfer 《Planta》1980,150(4):321-329
The question of whether or not hormones are causal links in the realization of phytochrome control during photomorphogenesis was investigated using the phytochrome-dependent formation of adventitious roots in hypocotyl cuttings excised from mustard seedlings as a test system. Histological examination of regenerating rest seedlings revealed that phytochrome (operationally, continuous far-red light) mediates the de novo formation of root primordia in the pericycle region of the hypocotyl near the cutting surface withing 12–24 h after excision.Auxin (IAA), gibberellin (GA3), Cytokinin (kinetin), abscisic acid (ABA), and ethylene had no promotive effect on primordium formation in dark-grown or far-red irradiated rest seedlings. Depending on concentration, the application of these hormones was either ineffective or inhibitory in the rooting response. It is concluded that phytochrome does not operate through changes of hormone (auxin, gibberellin, cytokinin, ABA, ethylene) levels.While externally applied ethylene had no specific effect on primordium formation, the number of primordia produced in darkness could be increased to the far-red light level by removing the endogenously formed ethylene. Since the stimulatory effect of light could not be related to a lower ethylene level, it is concluded that ethylene interferes with primordium formation by modulating the susceptibility of this process to phytochrome control. This ethylene effect takes place in a concentration range below the range that can be manipulated by external application of the hormone.Abbreviations ABA abscisic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - Pr Pfr red and far-red absorbing forms of phytochrome  相似文献   

5.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

6.
7.
The effect of light on the phytochrome content of cauliflower (Brassica oleracea (L.) var. botrytis) curd was studied using in vivo spectrophotometry. It was found that light caused a rapid increase in phytochrome level whereas transfer to darkness caused a rapid loss, regardless of the amount of phytochrome initially present in the far red absorbing form. The amount of phytochrome detectable during continuous irradiation appears to be related to the photoequilibrium , and is thus controlled by phytochrome itself.Abbreviation Pr and Pfr red and far red absorbing forms of phytochrome, respectively  相似文献   

8.
The red light-stimulated component of unrolling in sections from 7-d-old dark-grown barley (Hordeum vulgare L.) leaves is inhibited by ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetracetic acid (EGTA). A free-Ca2+ activity of less than 40 M restores the ability to respond to red light, but only if supplied within 1 h of red light. Magnesium ions are an ineffective substitute. At least two processes in unrolling appear to be Ca2+-sensitive.Fluence-response measurements indicate that the levels of the far-red-absorbing from of phytochrome (Pfr) still present 4 h after red-light treatment should be above saturation for the unrolling response; consequently, loss of Pfr does not explain the loss in effectiveness of Ca2+ during prolonged EGTA treatment. However, if a further red-light treatment is given simultaneously with Ca2+ addition 4 h after the initial light stimulus, then full unrolling occurs in EGTA-treated sections. These data indicate that, under normal circumstances, a functional change in the properties of Pfr must occur, uncoupling it from the transduction chain.Abbreviations EGTA ethyleneglycol-bis-(-aminoethylether)-N,N,N,N,-tetracetic acid - FR far-red light - Mes 2-(N-morpholino)ethanesulphonic, acid - Pfr far-red absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light  相似文献   

9.
Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.Abbreviations Norflurazon NF-4-chloro-5-(methylamino)-2-(,,,-trifluoro-m-tolyl)-3 (2H) pyridazinone - PAL phenylalanine ammonia-lyase - phytochrome photoequilibrium Pfr/Ptot - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome: Pr+Pfr  相似文献   

10.
Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10-4 M. At concentrations 10-1 M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. Coupling of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting escape kinetics were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of photochrome.Abbreviations EGTA ethyleneglycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FR far-red light - Pr red-light-absorbing form of phytochrome - Pfr far red-light-absorbing form of phytochrome - Pipes piperazine-1,4-bis(2-ethanesulfonic acid) - R red light A preliminary report of this work was presented at the XIV Int. Bot. Congr., Berlin (West), Germany, Book of Abstracts, 2-116a-5 (1987)  相似文献   

11.
D. C. Morgan  R. Child  H. Smith 《Planta》1981,151(5):497-498
In background white light, supplementary far-red (max 700 nm) is an order of magnitude less effective than supplementary far-red (max 739 nm) in the stimulation of stem extension in Sinapis alba. The relationship between phytochrome photoequilibrium and extension rate increase for the two supplementary far-red treatments is, however, very similar. This evidence indicates that phytochrome cycling is not involved in the phytochrome control of stem extension in light-grown Sinapis alba and that the response to supplementary far-red light is not fluence rate (irradiance) dependent.Abbreviations Pfr far-red absorbing form of phytochrome - the phytochrome photoequilibrium (Pfr/Ptotal)  相似文献   

12.
R. Hampp  A. R. Wellburn 《Planta》1979,147(3):229-235
Mitochondria isolated from 7-day old darkgrown Avena sativa L. (var. Arnold) laminae given 5 min illumination of red light, followed by varying lengths of darkness up to 3 h, showed at least a twofold increase in the rates of both NADH-dependent oxygen consumption and respiratory chain phosphorylation over those of mitochondria isolated from unilluminated tissue. Similar organelles, isolated from tissue given either far-red or red followed by far-red pretreatment, exhibited rates of both functions of between 25% and 75% below those of the mitochondria from unilluminated tissue. The induction-reversion criteria for phytochrome control of respiration and oxidative phosphorylation were satisfied under all experimental conditions during the greening process.Treatment with continuous far-red light, acting presumably through the high irradiance reaction of phytochrome, served to disengage phytochrome activity from photosynthesis. The stimulation of oxidative phosphorylation still occurred under these conditions, slightly slower but much more prolonged in the absence of ATP from photophosphorylation.Abbreviations BSA bovine serum albumen - DAD diaminodurene - EDTA ethylene-diaminetetra-acetic acid - HEPES N-2-hydroxy-ethyl-piperazine-N-2-ethane-sulphonic acid - Pfr phytochrome in the active form  相似文献   

13.
Avena phytochrome A (phyA) overexpressed in tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon sculentum Mill) was functionally characterised by comparing wild-type (WT) and transgenic seedlings. Different proportions of phytochrome in its far-red-absorbing form (Pfr/P) were provided by end-of-day (EOD) light pulses. Stem-length responses occurred largely in the range of low Pfr/P (3–61%) for WT seedlings and in the range of high Pfr/P (61–87%) for transgenic seedlings. A similar shift was observed when the photoperiod was interrupted by short light pulses providing different Pfr/P ratios and followed by 1 h dark incubation. In other experiments, Avena phyA was allowed to re-accumulate in darkness and subsequently phototransformed to Pfr but no extra inhibition of stem extension growth was observed. In transgenic tomato seedlings the response to EOD far-red light was faster and the response to a far-red light pulse delayed into darkness was larger than in the WT. Avena phyA Pfr remaining at the end of the photoperiod appears intrinsically unable to sustain growth inhibition in subsequent darkness. Avena phyA modifies the sensitivity and the kinetics of EOD responses mediated by native phytochrome.Abbreviations EOD end-of-day - FR far-red light - Pfr/P pro-portion of phytochrome in its FR-absorbing form - phyA phyto-chrome A - phyB phytochrome B - R red light - RFR R to FR ratio - WT wild type We thank Dr Brian Thomas for providing the antibodies used in this work, and Federico Guerendiain for his excellent technical assistance. This work was financially supported by grants UBA AG 040 and Fundacion Antorchas A-12830/1-19 (both to J.J.C.), PID-CONICET (to R.A.S. and J.J.C.), United States Department of Energy DE-FG02-88ER13968 (to R.D.V.).  相似文献   

14.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

15.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

16.
R. Brödenfeldt  H. Mohr 《Planta》1988,176(3):383-390
Time course for changes in the levels of enzymes characteristic of general phenylpropanoid metabolism (phenylalanine ammonia-lyase, PAL; EC 4.3.1.5) and of the flavonoid-glycoside branch pathway (naringenin-chalcone synthase, CHS; EC 2.3.1.74) were measured in the cotyledons of mustard (Sinapis alba L.) seedlings and compared with the rates of accumulation of related end products (anthocyanin and quercetin). Induction of enzyme levels and of end-product accumulation was carried out with red and far-red (FR) light, operating via phytochrome. The data are compatible with the concept that the phytochrome-mediated appearance of enzymes such as PAL and CHS is indeed a prerequisite for the appearance of anthocyanins and flavonols. However, there is no close correlation between enzyme levels and the rates of synthesis of end products which could justify the identification of specific rate-limiting enzymes. Rather, the data indicate that there is a second phytochrome-dependent step, beyond enzyme induction, where the actual rate of flavonoid accumulation is determined. Anthocyanin and quercetin accumulation respond differently to light. However, the relative action of continuous FR, red light pulses and stored phytochrome signal is the same in both cases. This indicates that the mode of operation of phytochrome is the same in both cases. The two syntheses differ only in the degree of responsiveness towards phytochrome. The time course for changes in CHS levels in continuous FR, i.e. under conditions of phytochrome photosteady state, is similar to the time course for PAL levels whereas the time courses in darkness, following transfer from FR to darkness, are totally different. In the case of CHS, a transient rise is observed whereas, with PAL, an instantaneous drop in enzyme level occurs after transfer from FR to darkness. It is concluded that the stored phytochrome signal operates in darkness in the case of CHS but not in the case of PAL.Abbreviations c continuous - CHS naringenin-chalcone synthase (EC 2.3.1.74) - FR far-red light (3.5 W·m-2) - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - Pfr phytochrome (far-red absorbing) - Pr phytochrome (red absorbing) - R red light (6.8 W·m-2) - RG9-light long-wavelength far-red light obtained with RG9 glass filter - [Pfr]/[Ptot], whereby - Ptot total phytochrome (Pr+Pfr)  相似文献   

17.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

18.
Anthocyanin formation in 36h dark grown Sinapis alba L. seedlings and inhibition of hypocotyl elongation in 36h and 54h dark grown and 54h and 7 day light grown seedlings in response to continuous red light could be substituted for by hourly 5 min light pulses where the total fluence over the irradiation period is the same. These pulses are partially (36h) or almost totally (54h and 7 day) reversible by subsequent far-red (RG 9) light pulses. In contrast to 654 nm light, hourly light pulses with 552 nm, 449 nm and 715 nm can at best only partially substitute for continuous irradiation. These data are discussed with respect to the commonly used models for the phytochrome high irradiance response.Abbreviations Ptr tar-red absorbing form of phytochrome - SAN 9789 4-chloro-5-(methyl-amino)-2-(,,-trifluoro-m-tolyl)-3(2H)-pyridazinone=Norflurazon - HIR High irradiance response  相似文献   

19.
Ca2+ is proposed to function as a messenger in such phytochrome-mediated responses as localized cell growth, intracellular movements, and control of plasma membrane properties. To test this hypothesis, the uptake of Ca2+ in irradiated and non-irradiated regions of individual threads of the green alga Mougeotia was studied with the aid of 45Ca2+ and low temperature autoradiography: 10–20 cells within 40–60 cell-long threads were irradiated for up to 1 min, transferred to darkness for 3 to 10 min, submersed in a radioactive medium for 1 min, washed in an unlabelled medium for 30 min, and then autoradiographed at-80° C for several days.The autoradiographs show that those cells which had been pre-irradiated with red light did take up 2–10 times more Ca2+ than the adjacent non-irradiated cells of the same thread. Cells pre-irradiated with farred light or red light followed by far-red light showed no enhanced uptake of Ca2+. These results might be interpreted to indicate, firstly, that phytochrome-Pfr is involved in the enhanced uptake of Ca2+ and secondly, that the accumulation of radioactive Ca2+ in red light irradiated cells is an expression of an increased intracellular concentration of Ca2+. This interpretation is based on the data that (i) the dark interval between irradiation and labelling precluded the involvement of photosynthesis, (ii) the effect of red light was reversible with far-red light, and (iii) the accumulation of Ca2+ persisted during the long wash-out period. We speculate, that the red light-enhanced accumulation of Ca2+ in Mougeotia cells is caused by a Pfr-mediated increase of the Ca-permeability of the plasma membrane, and perhaps by a Pfr-impeding of an active Ca2+-extrusion.Abbreviations APW artificial pond water - EGTA ethylene glycol-bis-(-amino ethyle ether) N,N-tetraacetic acid - R red irradiation - D darkness - FR far-red irradiation - Pfr physiologicallyactive form of phytochrome - Pr physiologically inactive form of phytochrome This paper is part of a Ph. D. Thesis submitted to the University of Erlangen-Nürnberg by E.M. Dreyer  相似文献   

20.
In epidermal cells of the leaves of the aquatic angiosperm Vallisneria gigantea Graebner, the chloroplasts accumulate in the outer periclinal layer of cytoplasm (P side) under light at low fluence rates. The nature of such intracellular orientation of chloroplasts was investigated in a semiquantitative manner. Time-lapse video microscopy revealed that, while irradiation with red light (650 nm, 0.41 W · m–2) rapidly accelerated the migration of chloroplasts, not only from the anticlinal layers of cytoplasm (A sides) to the P side but also from the P side to the A sides, the increased rate of migration in both directions returned to the control rate upon subsequent irradiation with far-red light (746nm, 0.14W · m–2). These effects of red and far-red light could be observed repeatedly, both in the presence and in the absence of inhibitors of photosynthesis, suggesting the involvement of phytochrome as the photoreceptor. After saturating irradiation with red light, the increased rate of migration of chloroplasts from the P side to the A sides declined more rapidly than the increased rate of migration in the opposite direction. This imbalance in the migration of chloroplasts between the two opposing directions resulted in the accumulation of chloroplasts on the P side. The more rapid decline in the rate of migration of chloroplasts from the P side to the A sides than in the opposite direction was not observed in the presence of an inhibitor of photosynthesis. It appears, therefore, that phytochrome and photosynthetic pigment cooperatively regulate the accumulation of chloroplasts on the P side through modulation of the nature of the movement of the chloroplasts.Abbreviations A side cytoplasmic layer that faces the anticlinal wall - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - P side cytoplasmic layer that faces the outer periclinal wall This work was supported in part by Grants-in-Aid from the Japanese Ministry of Education, Science and Culture to S.T. and R.N. The authors are indebted to the Osaka branch of Kashimura Inc. for their kind cooperation in preparing the GREEN software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号