首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Rajala RV  Chan MD  Rajala A 《Biochemistry》2005,44(47):15461-15471
Many retinal degenerative diseases show an early loss of rod cells followed by cone cells. In these degenerations the pathological phenotype is apoptosis. We have previously demonstrated the light-dependent tyrosine phosphorylation of the insulin receptor in the retina, which leads to the activation of anti-apoptotic signaling molecules. The mechanism of the regulation of the insulin receptor in the retina is not known. Yeast two-hybrid screening of a bovine retinal cDNA library with the cytoplasmic domain of the retinal insulin receptor (IRbeta) identified a member of the Grb7 (growth factor receptor-bound protein 7) gene family, Grb14. In this report, we describe the unique features of Grb14. Grb14 forms a specific complex with the cytoplasmic domain of IRbeta when both are expressed as hybrid proteins in yeast cells. This interaction is strictly dependent upon receptor tyrosine kinase activity. Deletion mutagenesis on Grb14 indicated a phosphorylated insulin receptor interacting (PIR) domain between the PH (pleckstrin homology) and SH2 (Src homology) domains that binds to IRbeta. Nuclear import assays in yeast indicated the presence of a functional nuclear localization signal in Grb14 between amino acids 63 and 68 (RRKKD). Subcellular localization of isolated retinas probed with anti-Grb14 antibody further confirmed the presence of Grb14 in nuclear fractions. Analysis using a protein-lipid overlay assay indicated binding of Grb14 and its PH domain to D3 phosphoinositides. In addition, Grb14-phosphoinositide 3,4,5-trisphosphate complexes are detected in lysates prepared from insulin-stimulated retina tissues, whereas Grb14-phosphoinositide 4,5-bisphosphate interactions are observed under non-insulin stimulated conditions. These findings suggest that Grb14 could be a diverse regulator of insulin receptor mediated pathways in the retina.  相似文献   

2.
3.
Grb2 is an adaptor protein composed of a single SH2 domain flanked by two SH3 domains. Grb2 functions as an important evolutionary conserved link between a variety of cell membrane receptors and the Ras/MAP kinase-signaling cascade. Here, we describe the solution structure of Grb2 as revealed by NMR and small angle X-ray scattering measurements. We demonstrate that Grb2 is a flexible protein in which the C-terminal SH3 domain is connected to the SH2 domain via a flexible linker. This is in contrast to the previously described Grb2 crystal structure, which showed a compact structure with intramolecular contact between two SH3 domains. Binding experiments on Grb2 and peptides containing two different proline-rich sequences indicate that Grb2 adapts the relative position and orientation of the two SH3 domains to bind bivalently to the target peptide sequences.  相似文献   

4.
5.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

6.
Growth factor receptor bound protein 7 (Grb7) is an adapter protein that functions as a downstream effector of growth factor mediated signal transduction. Over-expression of Grb7 has been implicated in a variety of cancers such as breast, blood, pancreatic, esophageal, and gastric carcinomas. Inhibition of Grb7 has been shown to reduce the migratory and proliferative potential of these cancers, making it an attractive therapeutic target. Starting with a known peptide antagonist, the present work reports the application of a succession of computational ligand design tools comprising a ligand shape based similarity search, molecular docking and a 2D-similarity search to identify small molecular antagonists of the Grb7-SH2 domain from the NCI chemical database. Binding to the Grb7-SH2 domain was then experimentally tested using melting point shift assays and isothermal titration calorimetry. Overall, a total of 11 benzopyrazine based small molecular antagonists were identified with affinity for the Grb7-SH2 domain. Representative compounds tested using ITC were revealed to possess moderate binding affinity in the low micromolar range. Finally, the lead compound (NSC642056) was found to reduce the growth of a Grb7-expressing breast cancer cell line with an IC50 of 86 ??M. It is expected that the identified antagonists will be useful additions to further explore the function of Grb7 and for the development of inhibitors with therapeutic potential.  相似文献   

7.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

8.
Gupta VK  Rajala A  Daly RJ  Rajala RV 《EMBO reports》2010,11(11):861-867
Growth factor receptor-bound protein 14 (Grb14) is an adaptor protein that is involved in receptor tyrosine kinase signalling. In this study, we report that Grb14 interacts with the rod photoreceptor-specific cyclic-nucleotide-gated channel alpha subunit (CNGA1) and decreases its affinity for cyclic guanosine monophosphate. Channel modulation is controlled by direct binding of the Grb14 Ras-associating domain with the carboxy-terminal region of CNGA1. We observed that the channel remains open in Grb14(-/-) mice that are exposed to light, suggesting that Grb14 is a normal physiological modulator of CNG channel function in vivo.  相似文献   

9.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   

10.
The Grb2 adapter protein is involved in the activation of the Ras signaling pathway. It recruits the Sos protein by binding of its two SH3 domains to Sos polyproline sequences. We observed that the binding of Grb2 to a bivalent ligand, containing two Sos-derived polyproline-sequences immobilized on a SPR sensor, shows unusual kinetic behavior. SPR-kinetic analysis and supporting data from other techniques show major contributions of an intermolecular bivalent binding mode. Each of the two Grb2 SH3 domains binds to one polyproline-sequence of two different ligand molecules, facilitating binding of a second Grb2 molecule to the two remaining free polyproline binding sites. A molecular model based on the X-ray structure of the Grb2 dimer shows that Grb2 is flexible enough to allow this binding mode. The results fit with a role of Grb2 in protein aggregation, achieving specificity by multivalent interactions, despite the relatively low affinity of single SH3 interactions.  相似文献   

11.
The Grb2 adaptor protein is best known for its role in signaling to the small GTPase p21(ras), mediated through its interaction with the SOS guanine nucleotide exchange factor. Here, we demonstrate that Grb2 also signals to Rab5, a small GTPase that plays a key role in early endocytic trafficking. Grb2 functions through association with RN-tre, a GTPase-activating protein for Rab5. Grb2 and RN-tre associate both in vitro and in vivo, with interaction mediated by both SH3 domains of Grb2 and extended proline-rich sequences in RN-tre. Association between Grb2 and RN-tre is constitutive and occurs independently of Eps8, a previously identified binding partner of RN-tre. Epidermal growth factor (EGF) stimulates recruitment of RN-tre to the EGF receptor (EGFR) in a Grb2-dependent manner. Grb2 and the EGFR are internalized and co-localized in endocytic vesicles in response to EGF. Overexpression of RN-tre blocks the internalization of both proteins, consistent with its function as a negative regulator of Rab5 and endocytosis. Strikingly, RN-tre does not block EGF-induced internalization of a Grb2 mutant deficient in RN-tre binding. These results 1) suggest that the ability of RN-tre to inhibit internalization of the EGFR requires Grb2-mediated binding to the receptor and 2) identify Grb2 as a critical regulator of Rab5 and EGFR endocytosis.  相似文献   

12.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

13.
DOC-2/DAB2 (differentially expressed in ovarian carcinoma-2/disabled 2) appears to be a potential tumor suppressor gene with a growth inhibitory effect on several cancer types. Previously, we have shown that DOC-2/DAB2 suppresses protein kinase C-induced AP-1 activation, which is modulated by serine 24 phosphorylation in the N terminus of DOC-2/DAB2. However, the functional impact of the C terminus of DOC-2/DAB2, containing three proline-rich domains, has not been explored. In this study, we examined this functional role in modulating signaling mediated by peptide growth factor receptor tyrosine kinase, particularly because it involves the interaction with Grb2. Using sequence-specific peptides, we found that the second proline-rich domain of DOC-2/DAB2 is the key binding site to Grb2 in the presence of growth factors. Such elevated binding interrupts the binding between SOS and Grb2, which consequently suppresses downstream ERK phosphorylation. Reduced ERK phosphorylation was restored when the binding between DOC-2/DAB2 and Grb2 was interrupted by a specific peptide or by increasing the expression of Grb2. Furthermore, the C terminus of the DOC-2/DAB2 construct can inhibit the AP-1 activity elicited by growth factors. We conclude that DOC-2/DAB2, a potent negative regulator, can suppress ERK activation by interrupting the binding between Grb2 and SOS that is elicited by peptide growth factors. This study further illustrates that DOC-2/DAB2 has multiple effects on the RAS-mediated signal cascades active in cancer cells.  相似文献   

14.
D Cussac  M Frech    P Chardin 《The EMBO journal》1994,13(17):4011-4021
Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.  相似文献   

15.
The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2, and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase.  相似文献   

16.
The growth factor receptor-binding protein-Src homology 2 (Grb2-SH2) domain plays an important role in the oncogenic Ras signal transduction pathway, which involves cell proliferation and differentiation. Therefore, the Grb2-SH2 domain has been chosen as our target for development of potential antiproliferative agents. Herein, we report the study of the inhibitory effects of small nonphosphorylated peptide analogs interacting with the Grb2-SH2 domain protein by surface plasmon resonance (SPR) technology. A set of 8 related peptide analogs were synthesized, purified, and characterized. Their inhibitory effects on Grb2-SH2 were evaluated by the SPR technology developed with the BIACORE X instrument. The lead peptide, Fmoc-Glu-Tyr-Aib-Asn-NH2 (Fmoc-E-Y-Aib-N; Fmoc: 9-fluorenylmethyoxycarbonyl; Aib=alpha-amino isobutyric acid) inhibited Grb2-SH2 domain function with an IC50 value of 8.7 microM. A molecular modeling study of the lead peptide indicated that the glutamate in the Fmoc peptide is ideally positioned to form a strong salt bridge to Arg 67 in the Grb2-SH2 domain, using both its backbone carbonyl and its acidic group. Residue Glu 89 in Grb2-SH2 flips inward to fill the binding site and partially replace the phosphate group as a hydrogen-bond acceptor. Results of these studies provide important information for further development of potent nonphosphorylated peptide inhibitors of the Grb2-SH2 domain.  相似文献   

17.
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways.  相似文献   

18.
Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. Here we report on the structural dynamic effects upon interaction of a phosphopeptide ligand derived from the recognition sequence of the Shc adaptor protein with (i) the isolated SH2 domain of Grb2 (Grb2 SH2) and (ii) the full-length Grb2 protein. From kinetic studies using surface plasmon resonance, it was deduced that a conformation change occurred in the SH2 protein as well as the full-length Grb2 after binding. Measurements of hydrogen/deuterium exchange (HDX) in the isolated SH2 domain and full-length Grb2 protein as monitored by electrospray mass spectrometry, showed that binding reduces the overall flexibility of the proteins, possibly via slightly different mechanisms for the single SH2 domain and the full-length Grb2 protein.  相似文献   

19.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   

20.
The B class cell-attached ephrins mediate contact-dependent cell-cell communications and transduce the contact signals to the host cells through the binding interactions of their cytoplasmic domains. Two classes of intracellular effectors of B ephrins have been identified: one contains the PSD-95/Dlg/ZO-1 (PDZ) domain (for example PDZ-RGS3), and the second the Src homology 2 (SH2) domain (e.g. the Grb4 adaptor protein). The interaction with Grb4 requires phosphorylation of tyrosine residues on the conserved cytoplasmic C-terminal region of B ephrins, while binding to the PDZ domain is independent of tyrosine phosphorylation. However, the exact phosphorylation site(s) required for signaling remained obscure and it is also unknown whether the two classes of effectors can bind to B ephrins simultaneously or if the binding of one affects the binding of the other. We report here that phosphorylation of Tyr304 in the functional C-terminal region (residues 301-333) of ephrin B2 confers high-affinity binding to the SH2 domain of the Grb4 protein. Tyrosine phosphorylation at other candidate sites resulted in only minor change of the binding of Tyr304-phosphorylated ephrin B peptide (i.e. ephrinB2(301-333)-pY304) with the SH2 domain. (1)H-(15)N NMR HSQC experiments show that only the ephrinB2(301-333)-pY304 peptide forms a stable and specific binding complex with the SH2 domain of Grb4. The SH2 and PDZ domains were found to bind to the Tyr304 phosphopeptide both independently and at the same time, forming a three-component molecular complex. Taken together, our studies identify a novel SH2 domain binding motif, PHpY304EKV, on the cytoplasmic domains of B ephrins that may be essential for reverse signaling via the Grb4 adaptor protein alone or in concert with proteins containing PDZ domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号