首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds. Three-letter abbreviations for names of genera of Halobacteriaceae conform the recommendations of the ICSP Subcommittee on the Taxonomy of Halobacteriaceae.  相似文献   

2.
Aharon Oren 《Hydrobiologia》2001,466(1-3):61-72
Examination of the microbial diversity in hypersaline lakes of increasing salt concentrations shows that certain types of dissimilatory metabolism do not occur at the highest salinities. Examples are methanogenesis from hydrogen and carbon dioxide or from acetate, dissimilatory sulfate reduction with oxidation of acetate, and autotrophic nitrification. The observations can be explained on the basis of the energetic cost of haloadaptation used by the different metabolic groups and the free-energy change associated with the dissimilatory reactions. All halophilic microorganisms spend large amounts of energy to maintain steep gradients of Na+ and K+concentrations across their cytoplasmic membrane. Most Bacteria and also the methanogenic Archaea produce high intracellular concentrations of organic osmotic solutes at a high energetic cost. The halophilic aerobic Archaea (order Halobacteriales) and the halophilic fermentative Bacteria (order Halanaerobiales) use KCl as the main intracellular solute. This strategy, while requiring far-reaching adaptations of the intracellular machinery, is energetically more favorable than production of organic compatible solutes. By combining information on the amount of energy available to each physiological group and the strategy used to cope with salt stress, a coherent model emerges that provides explanations for the upper salinity limit at which the different microbial conversions occur in hypersaline lakes.  相似文献   

3.
Several groups of Archaea, all Euryarchaeota, develop in hypersaline environments (from >10 % salt up to saturation). The cultured diversity of halophilic Archaea includes the family Halobacteriaceae of aerobic or facultative anaerobic, generally red-pigmented species (47 genera and 165 species as of February 2014) and seven representatives of four genera of methanogens, most of which obtain energy from methylated amines under anaerobic conditions. Metagenomic studies have identified an additional deep lineage of Archaea in salt lakes and ponds with brines approaching NaCl saturation. Genomic information is now available for representatives of these ‘Nanohaloarchaea’, but no members of this lineage have yet been cultured. Multilocus sequence analysis is becoming increasingly popular in taxonomic studies of the Halobacteriaceae, and such studies have demonstrated that recombination of genetic traits occurs at an extremely high frequency at least in some genera. Metagenomic studies in an Antarctic lake showed that large identical regions of up to 35 kb in length can be shared by members of different genera living together in the same environment. Such observations have important implications not only for the taxonomy of the Halobacteriaceae, but also for species concepts and questions on taxonomy and classification for prokaryotic microorganisms in general.  相似文献   

4.
The phylogenetic diversity of microorganisms living at high salt concentrations is surprising. Halophiles are found in each of the three domains: Archaea, Bacteria, and Eucarya. The metabolic diversity of halophiles is great as well: they include oxygenic and anoxygenic phototrophs, aerobic heterotrophs, fermenters, denitrifiers, sulfate reducers, and methanogens. The diversity of metabolic types encountered decreases with salinity. The upper salinity limit at which each dissimilatory process takes place is correlated with the amount of energy generated and the energetic cost of osmotic adaptation. Our understanding of the biodiversity in salt-saturated environments has increased greatly in recent years. Using a combination of culture techniques, molecular biological methods, and chemotaxonomic studies, we have obtained information on the nature of the halophilic Archaea as well as the halophilic Bacteria that inhabit saltern crystallizer ponds. Several halophilic microorganisms are being exploited in biotechnology. In some cases, such as the production of ectoine, the product is directly related to the halophilic behavior of the producing microorganism. In other cases, such as the extraction of β-carotene from Dunaliella or the potential use of Haloferax species for the production of poly-β-hydroxyalkanoate or extracellular polysaccharides, similar products can be obtained from non-halophiles, but halophilic microorganisms may present advantages over the use of non-halophilic counterparts. Journal of Industrial Microbiology & Biotechnology (2002) 28, 56–63 DOI: 10.1038/sj/jim/7000176 Received 20 May 2001/ Accepted in revised form 20 June 2001  相似文献   

5.
Diversity of extremely halophilic bacteria   总被引:3,自引:0,他引:3  
In this review, the history of the classification of the family Halobacteriaceae, the extremely halophilic aerobic Archaea, is reviewed with some emphasis on the recently described new genera Halobaculum, Halorubrum, Natrialba, Natronomonas, and "Haloterrigena." Speculation is made about the evolutionary relationship between members of the Halobacteriaceae and the extremely halophilic, anaerobic methanogens of the genera Methanohalobium and Methanohalophilus. Efforts to find missing links between the two groups are also reviewed. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

6.
Haloarchaeal strains require high concentrations of NaCl for their growth, with optimum concentrations of 10–30%. They display a wide variety of morphology and physiology including pH range for growth. Many strains grow at neutral to slightly alkaline pH, and some only at alkaline pH. However, no strain has been reported to grow only in acidic pH conditions within the family Halobacteriaceae. In this study, we isolated many halophiles capable of growth in a 20% NaCl medium adjusted to pH 4.5 from 28 commercially available salts. They showed growth at pH 4.0 to 6.5, depending slightly on the magnesium content. The most acidophilic strain MH1-52-1 isolated from an imported solar salt (pH of saturated solution was 9.0) was non-pigmented and extremely halophilic. It was only capable of growing at pH 4.2–4.8 with an optimum at pH 4.4 in a medium with 0.1% magnesium chloride, and at pH 4.0–6.0 (optimum at pH 4.0) in a medium with 5.0% magnesium. The 16S rRNA and DNA-dependent RNA polymerase subunit B' gene sequences demonstrated clearly that the strain MH1-52-1 represents a new genus in the family Halobacteriaceae.  相似文献   

7.
Halophilic microorganisms are found as normal inhabitants of highly saline environments and thus are considered extremophiles. They are mainly represented, but not exclusively, by the halobacteria (extremely halophilic aerobic Archaea), the moderate halophiles (Bacteria and some methanogens) and several eukaryotic algae. These extremophilic microorganisms are already used for some biotechnological processes, for example halobacteria are used for the production of bacteriorhodopsin, and the alga Dunaliella is used in the commercial production of -carotene. Several other present or potential applications of halophiles are reviewed, including the production of polymers (polyhydroxyalcanoates and polysaccharides), enzymes, and compatible solutes, and the use of these extremophiles in enhanced oil recovery, cancer detection, drug screening and the biodegradation of residues and toxic compounds.The authors are with the Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41012 Sevilla, Spain  相似文献   

8.
Salinibacter ruber is a red obligatory aerobic chemoorganotrophic extremely halophilic Bacterium, related to the order Cytophagales. It was isolated from saltern crystallizer ponds, and requires at least 150 g l(-1) salt for growth. The cells have an extremely high potassium content, the ratio K(+)/protein being in the same range as in halophilic Archaea of the order Halobacteriales. X-ray microanalysis in the electron microscope of cells grown in medium of 250 g l(-1) salt confirmed the high intracellular K(+)concentrations, and showed intracellular chloride to be about as high as the cation concentrations within the cells. A search for intracellular organic osmotic solutes, using (13)C-NMR and HPLC techniques, showed glutamate, glycine betaine, and N-alpha-acetyllysine to be present in low concentrations only, contributing very little to the overall osmotic balance. The results presented suggest that the extremely halophilic Bacterium Salinibacteruses a similar mode of haloadaptation to that of the Archaea of the order Halobacteriales, and does not accumulate organic osmotic solutes such as are used by all other known halophilic and halotolerant aerobic Bacteria.  相似文献   

9.
Salinibacter is a genus of red, extremely halophilic Bacteria. Thus far the genus is represented by a single species, Salinibacter ruber, strains of which have been isolated from saltern crystallizer ponds in Spain and on the Balearic Islands. Both with respect to its growth conditions and its physiology, Salinibacter resembles the halophilic Archaea of the order Halobacteriales. We have designed selective enrichment and isolation techniques to obtain Salinibacter and related red extremely halophilic Bacteria from different hypersaline environments, based on their resistance to anisomycin and bacitracin, two antibiotics that are potent inhibitors of the halophilic Archaea. Using direct plating on media containing bacitracin, we found Salinibacter-like organisms in numbers between 1.4×103 and 1.4×106ml−1 in brines collected from the crystallizer ponds of the salterns in Eilat, Israel, being equivalent to 1.8–18% of the total colony counts obtained on identical media without bacitracin. A number of strains from Eilat were subjected to a preliminary characterization, and they proved similar to the type strain of S. ruber. We also report here the isolation and molecular detection of Salinibacter-like organisms from an evaporite crust on the bottom of salt pools at the Badwater site in Death Valley, CA. These isolates and environmental 16S rRNA gene sequences differ in a number of properties from S. ruber, and they may represent a new species of Salinibacter or a new related genus. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

10.
In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.  相似文献   

11.
One of the functions of the mammalian large intestinal microbiota is the fermentation of plant cell wall components. In ruminant animals, the majority of their nutrients are obtained via pregastric fermentation; however, up to 20% can be recovered from microbial fermentation in the large intestine. Eight-week continuous culture enrichments of cattle feces with cellulose and xylan-pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented: Firmicutes (51.9%), Bacteroidetes (30.9%), Proteobacteria (11.1%), Actinobacteria (3.5%), Synergistetes (1.5%), and Fusobacteria (1.1%). The majority of bacterial isolates had <98.5% identity to cultured bacteria with sequences in the Ribosomal Database Project and thus represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, B. ovatus, and B. xylanisolvens and members of the Porphyromonadaceae family. Many of the Firmicutes and Bacteroidetes isolates were related to species demonstrated to possess enzymes which ferment plant cell wall components; the others were hypothesized to cross-feed these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 98% of the isolates not represented as previously cultured, there are new opportunities to study the genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

12.
Solar salterns are extreme hypersaline environments that are five to ten times saltier than seawater (150–300 g L−1 salt concentration) and typically contain high numbers of halophiles adapted to tolerate such extreme hypersalinity. Thirty-five halophile cultures of both Bacteria and Archaea were isolated from the Exportadora de Sal saltworks in Guerrero Negro, Baja California, Mexico. 16S rRNA sequence analysis showed that these cultured isolates included members belonging to the Halorubrum, Haloarcula, Halomonas, Halovibrio, Salicola, and Salinibacter genera and what may represent a new archaeal genus. For the first time, metabolic substrate usage of halophile isolates was evaluated using the non-colorimetric BIOLOG Phenotype MicroArray™ plates. Unique carbon substrate usage profiles were observed, even for closely related Halorubrum species, with bacterial isolates using more substrates than archaeal cultures. Characterization of these isolates also included morphology and pigmentation analyses, as well as salinity tolerance over a range of 50–300 g L−1 salt concentration. Salinity optima varied between 50 and 250 g L−1 and doubling times varied between 1 and 12 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The ostrich (Struthio camelus) is a herbivorous bird and although the hindgut is known as the site for fiber digestion, little is known about the microbial diversity in the ostrich hindgut. Our aim was to analyze the microbial diversity in ostrich ceca using a 16S ribosomal RNA gene (rDNA) clone library approach. A total of 310 clones were sequenced and phylogenetically analyzed and were classified into 110 operational taxonomy units (OTUs) based on a 98% similarity criterion. The similarity of the sequences ranged from 86 to 99% and 95 OTUs had less than 98% similarity to the sequences in the public databases. Coverage and the Shannon–Wiener index (H′) of the library were 83.9% and 4.29, respectively. The sequences were assigned to the following 6 phyla: Firmicutes (50.9% of the total number of sequences), Bacteroidetes (39.4%), Fibrobacteres (6.5%), Euryarchaeota (1.9%), Spirochaetes (1.0%), and Verrucomicrobia (0.3%); approximately 90% of the sequences were affiliated with Firmicutes and Bacteroidetes. The only OTU of Fibrobacteres (OTU 107), had 93 and 90% similarity to Fibrobacter succinogenes and F. intestinalis, respectively, suggesting a new species of Fibrobacter in ostrich ceca. Clostridium coccoides and C. leptum formed major groups within the Firmicutes. There was no OTU with high similarity (≥98%) to the 16S rDNA of cultivated fibrolytic bacteria in our library. Although two OTUs were affiliated with Euryarchaeota, no sequence was affiliated with methanogenic Archaea. This study presents the very complex ostrich cecal microbial community, in which the majority of the bacterial species have not yet been cultivated.  相似文献   

14.
Clone library of bacterial 16S rRNA gene was constructed to evaluate the bacterial diversity and community structure of uterus samples obtained from three postpartum healthy cows and three metritic cows on days 10 and 40. Sequences were assigned to five major groups (Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, and Tenericutes) and to an uncultured group. On day 10, Bacteroidetes, Firmicutes, and Fusobacteria were the dominant group both in healthy and metritic cows. On day 40, the major sequences were affiliated with Bacteroidetes, Firmicutes, Tenericutes, and Proteobacteria. Tenericutes (Ureaplasma diversum) were revealed only from healthy cows, while Proteobacteria (Histophilus somni) were found only from metritic cows. Quantitative PCR revealed that metritic cows on day 10 showed higher value of total bacteria, Bacteroidetes, Peptostreptococcus, and Fusobacterium compared with healthy cows, while only a higher value of Fusobacterium spp. was observed from the metritic cows on day 40 compared with that from healthy cows (P?<?0.05). Our data indicates that great difference in the uterine bacterial community in both phyla level and species level exists between healthy and metritic postpartum cows, and dynamic changes in bacterial community occur over time.  相似文献   

15.
Biogeography of microbial populations remains to be poorly understood, and a novel technique of single cell sorting promises a new level of resolution for microbial diversity studies. Using single cell sorting, we compared saturated NaCl brine environments (32–35 %) of the South Bay Salt Works in Chula Vista in California (USA) and Santa Pola saltern near Alicante (Spain). Although some overlap in community composition was detected, both samples were significantly different and included previously undiscovered 16S rRNA sequences. The community from Chula Vista saltern had a large bacterial fraction, which consisted of diverse Bacteroidetes and Proteobacteria. In contrast, Archaea dominated Santa Pola’s community and its bacterial fraction consisted of the previously known Salinibacter lineages. The recently reported group of halophilic Archaea, Nanohaloarchaea, was detected at both sites. We demonstrate that cell sorting is a useful technique for analysis of halophilic microbial communities, and is capable of identifying yet unknown or divergent lineages. Furthermore, we argue that observed differences in community composition reflect restricted dispersal between sites, a likely mechanism for diversification of halophilic microorganisms.  相似文献   

16.
The brine shrimp, Artemia is the dominant macrozooplankton present in many hypersaline environments. Artemia urmiana is the only macroscopic organism in Urmia Salt Lake (Iran), and the high salinity of the lake makes it a suitable environment for halophilic archaea too. Because of common environment for Artemia and extreme halophiles; this investigation is concentrated on studying the relationship between Artemia and halophilic archaea in Urmia Lake. In this study first the procedure of arhaea isolation was done. Then, isolated strains were sub-cultured and DNA was extracted and amplified by PCR using specific primers for amplifying archaeal 16S rRNA. The amplified archeal DNA fragments were purified, and sequenced. 16S rRNA sequences were compared to known sequences using the NCBI BLAST program. Sequences relating to Halorubrum, Haloarcula and Halobacterium species were identified in Urmia Salt Lake water and Artemia adults and the phylogenetic tree of different species was constructed. Only Halorubrum species were present in association with Artemia. They belong to Halobacteriaceae family of archeae which are isolated from different salt lakes in different parts of world and we could show their existence in adult Artemia, another organism living in hypersaline enviroments.  相似文献   

17.
Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.  相似文献   

18.
Halobacteria, members of the domain Archaea that live under extremely halophilic conditions, are often considered as dependable source for deriving novel enzymes, novel genes, bioactive compounds and other industrially important molecules. Protein antibiotics have potential for application as preserving agents in food industry, leather industry and in control of infectious bacteria. Halocins are proteinaceous antibiotics synthesized and released into the environment by extreme halophiles, a universal characteristic of halophilic bacteria. Herein, we report the production of halocin (SH10) by an extremely halophilic archeon Natrinema sp. BTSH10 isolated from salt pan of Kanyakumari, Tamilnadu, India and optimization of medium for enhanced production of halocin. It was found that the optimal conditions for maximal halocin production were 42 °C, pH 8.0, and 104 h of incubation at 200 rpm with 2% (V/V) inoculum concentration in Zobell’s medium containing 3 M NaCl, Galactose, beef extract, and calcium chloride as additional supplements. Results indicated scope for fermentation production of halocin for probable applications using halophilic archeon Natrinema sp. BTSH10.  相似文献   

19.
Halogranum salarium is an extremely halophilic archaeon isolated from evaporitic salt crystals and belongs to the family Halobacteriaceae. Here, we present the 4.5-Mb draft genome sequence of the type strain (B-1T) of H. salarium. This is the first report of the draft genome sequence of a haloarchaeon in the genus Halogranum.  相似文献   

20.
Bacterial diversity in the rice rhizosphere at different rice growth stages, managed under conventional and no-tillage practices, was explored using a culture-based approach. Actinobacteria are among the bacterial phyla abundant in the rice rhizosphere. Their diversity was further examined by constructing metagenomic libraries based on the 16S rRNA gene, using actinobacterial- and streptomycete-specific polymerase chain reaction (PCR) primers. The study included 132 culturable strains and 125 clones from the 16S rRNA gene libraries. In conventional tillage, there were 38% Proteobacteria, 22% Actinobacteria, 33% Firmicutes, 5% Bacteroidetes, and 2% Acidobacteria, whereas with no-tillage management there were 63% Proteobacteria, 24% Actinobacteria, 6% Firmicutes, and 8% Bacteroidetes as estimated using the culture-dependent method during the four stages of rice cultivation. Principal coordinates analysis was used to cluster the bacterial communities along axes of maximal variance. The different growth stages of rice appeared to influence the rhizosphere bacterial profile for both cultivation practices. Novel clones with low similarities (89–97%) to Actinobacteria and Streptomyces were retrieved from both rice fields by screening the 16S rRNA gene libraries using actinobacterial- and streptomycete-specific primers. By comparing the actinobacterial community retrieved by culture-dependent and molecular methods, it was clear that a more comprehensive assessment of microbial diversity in the rice rhizosphere can be obtained using a combination of both techniques than by using either method alone. We also succeeded in culturing a number of bacteria that were previously described as unculturable. These were in a phylogenetically deep lineage when compared with related cultivable genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号