首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely distributed northern hardwood species at sites of low and high soil nitrogen availability. In addition, we assessed whether the carbon–nutrient balance (CNB) and growth differentiation balance (GDB) hypotheses could be extended to predict changes in litter quality in response to resource availability. Sugar maple (Acer saccharum) was grown in the field in open‐top chambers at 36 and 55 Pa partial pressure CO2, and initial soil mineralization rates of 45 and 348 μg N g?1 d?1. Naturally senesced leaf litter was assessed for chemical composition and incubated in the laboratory for 111 d. Microbial respiration and the production of dissolved organic carbon (DOC) were quantified as estimates of decomposition. Elevated CO2 and low soil nitrogen resulted in higher litter concentrations of nonstructural carbohydrates and condensed tannins, higher C/N ratios and lower N concentrations. Soil N availability appears to have had a greater effect on litter quality than did atmospheric CO2, although the treatments were additive, with highest concentrations of nonstructural carbohydrates and condensed tannins occurring under elevated CO2–low soil N. Rates of microbial respiration and the production of DOC were insensitive to differences in litter quality. In general, concentrations of litter constituents, except for starch, were highly correlated to those in live foliage, and the CNB/GDB hypotheses proved useful in predicting changes in litter quality. We conclude the chemical composition of sugar maple litter will change in the future in response to rising atmospheric CO2, and that soil N availability will exert a major control. It appears that microbial metabolism will not be directly affected by changes in litter quality, although conclusions regarding decomposition as a whole must consider the entire soil food web.  相似文献   

2.
Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L. and Q. pubescens Willd.) exposed to long-term elevated CO2 around a natural CO2 spring in Tuscany (Italy) was used to study the impact of increasing concentration of atmospheric CO2 on litter quality and C and N turnover rates in a Mediterranean-type ecosystem. Litter samples were collected in an area with elevated CO2 (>500 ppm) and in an area with ambient CO2 concentration (360 ppm). Leaf samples were analysed for concentrations of total C, N, lignin, cellulose, acid detergent residue (ADR) and polyphenol. The decomposition rate of litter was studied using a litter bag experiment (12 months) and laboratory incubations (3 months). In the laboratory incubations, N mineralization in litter samples was measured as well (125 days). Litter quality was expressed in terms of chemical composition and element ratios. None of the litter quality parameters was affected by elevated CO2 for the two Quercus species. Remaining mass in Q. cerris and Q. pubescens litter from elevated CO2 was similar to that from ambient conditions. C mineralization in Q. pubescens litter from elevated CO2 was lower than that from ambient CO2, but the difference was insignificant. This effect was not observed for Q. cerris. N mineralization was higher from litter grown at elevated CO2, but this difference disappeared at the end of the incubation. Litter of Q. pubescens had a higher quality than Q. cerris, and indeed mineralized more rapidly in the laboratory, but not under field conditions.  相似文献   

3.
Decomposition of Quercus myrtifolia leaf litter in a Florida scrub oak community was followed for 3 years in two separate experiments. In the first experiment, we examined the effects CO2 and herbivore damage on litter quality and subsequent decomposition. Undamaged, chewed and mined litter generated under ambient and elevated (ambient+350 ppm V) CO2 was allowed to decompose under ambient conditions for 3 years. Initial litter chemistry indicated that CO2 levels had minor effects on litter quality. Litter damaged by leaf miners had higher initial concentrations of condensed tannins and nitrogen (N) and lower concentrations of hemicellulose and C : N ratios compared with undamaged and chewed litter. Despite variation in litter quality associated with CO2, herbivory, and their interaction, there was no subsequent effect on rates of decomposition under ambient atmospheric conditions. In the second experiment, we examined the effects of source (ambient and elevated) of litter and decomposition site (ambient and elevated) on litter decomposition and N dynamics. Litter was not separated by damage type. The litter from both elevated and ambient CO2 was then decomposed in both elevated and ambient CO2 chambers. Initial litter chemistry indicated that concentrations of carbon (C), hemicellulose, and lignin were higher in litter from elevated than ambient CO2 chambers. Despite differences in C and fiber concentrations, litter from ambient and elevated CO2 decomposed at comparable rates. However, the atmosphere in which the decomposition took place resulted in significant differences in rates of decomposition. Litter decomposing under elevated CO2 decomposed more rapidly than litter under ambient CO2, and exhibited higher rates of mineral N accumulation. The results suggest that the atmospheric conditions during the decomposition process have a greater impact on rates of decomposition and N cycling than do the atmospheric conditions under which the foliage was produced.  相似文献   

4.
Nitrogen cycling in northern temperate forest ecosystems could change under increasing atmospheric CO2 and tropospheric O3 as a result of quantitative and qualitative changes in plant litter production. At the Aspen Free Air CO2–O3 Enrichment (FACE) experiment, we previously found that greater substrate inputs to soil under elevated CO2 did not alter gross N transformation rates in the first 3 years of the experiment. We hypothesized that greater litter production under elevated CO2 would eventually cause greater gross N transformation rates and that CO2 effects would be nullified by elevated O3. Following our original study, we continued measurement of gross N transformation rates for an additional four years. From 1999 to 2003, gross N mineralization doubled, N immobilization increased 4-fold, but changes in microbial biomass N and soil total N were not detected. We observed year-to-year variation in N transformation rates, which peaked during a period of foliar insect damage. Elevated CO2 caused equivalent increases in gross rates of N mineralization (+34%) and NH 4 + immobilization (+36%). These results indicate greater rates of N turnover under elevated CO2, but do not indicate a negative feedback between elevated CO2 and soil N availability. Elevated O3 decreased gross N mineralization (−16%) and had no effect on NH 4 + immobilization, indicating reduced N availability under elevated O3. The effects of CO2 and O3 on N mineralization rates were mainly related to changes in litter production, whereas effects on N immobilization were likely influenced by changes in litter chemistry and production. Our findings also indicate that concomitant increases in atmospheric CO2 and O3 could lead to a negative feedback on N availability.  相似文献   

5.
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38 mg g?1 litter as respired CO2 and 138 mg g?1 litter as DOC, suggesting short‐term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO2.  相似文献   

6.
Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long‐term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230‐day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m−2 yr−1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF.  相似文献   

7.
The performance of Oniscus asellus (Isopoda) and its influence on litter mass loss and mineralization was assessed in a microcosm experiment, using beech (Fagus sylvatica) leaf litter that was produced on different soil types, contrasting atmospheric CO2 concentrations, and different nitrogen deposition rates. Litter quality was significantly altered by these treatments, and many of the CO2 and N effects differed between soil types. Litter quality affected subsequent litter mass loss rates, microbial respiration, and leaching of dissolved organic carbon (DOC) and nitrate. These effects were largely independent of the presence of isopods, even though isopods highly accelerated litter mass loss, stimulated microbial respiration by 37%, and increased nitrate leaching by 50%. Isopods did not change their relative rates of litter consumption and growth in response to litter quality. Isopod mortality, however, increased with increasing litter lignin/N ratios, and was significantly different between soil types, which may indicate long‐term effects on litter decomposition through altered isopod densities. Having the choice among the litter of three different species [maple (Acer pseudoplatanus), beech (Fagus sylvatica) and oak (Quercus robur)] grown at either ambient or elevated CO2, isopods preferred maple to beech when all the litter was produced under elevated CO2. This suggests that beyond changes in consumption, an altered food selection by isopods in a CO2‐enriched atmosphere may affect the temporal and spatial composition of the litter layer in temperate forests. In contrast to previous findings, we conclude that isopods do not always increase their consumption rates, and hence do not differentially affect microbial decomposition in litter of poorer quality. Nevertheless changes in animal densities and/or shifts in their food preferences, could result in altered decomposition and carbon and nutrient turnover rates.  相似文献   

8.
Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2‐induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi‐arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L?1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L?1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr?1 or 7.8±0.7 g m?2 yr?1 for 1998 litter; 18±3% yr?1 or 2.2±0.4 g m?2 yr?1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m?2 yr?1; elev. CO2: 35.0±1.1 g m?2 yr?1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m?2, elev. CO2: 13.3±3.4 g m?2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year‐to‐year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.  相似文献   

9.
The effects of elevated atmospheric CO2 (ambient + 340 μmol mol–1) on above-ground litter decomposition were investigated over a 6-week period using a field-based mesocosm system. Soil respiratory activity in mesocosms incubated in ambient and elevated atmospheric CO2 concentrations were not significantly different (t-test, P > 0.05) indicating that there were no direct effects of elevated atmospheric CO2 on litter decomposition. A study of the indirect effects of CO2 on soil respiration showed that soil mesocosms to which naturally senescent plant litter had been added (0.5% w/w) from the C3 sedge Scirpus olneyi grown in elevated atmospheric CO2 was reduced by an average of 17% throughout the study when compared to soil mesocosms to which litter from Scirpus olneyi grown in ambient conditions had been added. In contrast, similar experiments using senescent material from the C4 grass Spartina patens showed no difference in soil respiration rates between mesocosms to which litter from plants grown in elevated or ambient CO2 conditions had been added. Analysis of the C:N ratio and lignin content of the senescent material showed that, while the C:N ratio and lignin content of the Spartina patens litter did not vary with atmospheric CO2 conditions, the C:N ratio (but not the lignin content) of the litter from Scirpus olneyi was significantly greater (t-test;P < 0.05) when derived from plants grown under elevated CO2 (105:1 compared to 86:1 for litter derived from Scirpus olneyi grown under ambient conditions). The results suggest that the increased C:N ratio of the litter from the C3 plant Scirpus olneyi grown under elevated CO2 led to the lower rates of biodegradation observed as reduced soil respiration in the mesocosms. Further long-term experiments are now required to determine the effects of elevated CO2 on C partitioning in terrestrial ecosystems.  相似文献   

10.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

11.
M. F. Cotrufo  P. Ineson 《Oecologia》1996,106(4):525-530
The effect of elevated atmospheric CO2 and nutrient supply on elemental composition and decomposition rates of tree leaf litter was studied using litters derived from birch (Betula pendula Roth.) plants grown under two levels of atmospheric CO2 (ambient and ambient +250 ppm) and two nutrient regimes in solar domes. CO2 and nutrient treatments affected the chemical composition of leaves, both independently and interactively. The elevated CO2 and unfertilized soil regime significantly enhanced lignin/N and C/N ratios of birch leaves. Decomposition was studied using field litter-bags, and marked differences were observed in the decomposition rates of litters derived from the two treatments, with the highest weight remaining being associated with litter derived from the enhanced CO2 and unfertilized regime. Highly significant correlations were shown between birch litter decomposition rates and lignin/N and C/N ratios. It can be concluded, from this study, that at levels of atmospheric CO2 predicted for the middle of the next century a deterioration of litter quality will result in decreased decomposition rates, leading to reduction of nutrient mineralization and increased C storage in forest ecosystems. However, such conclusions are difficult to generalize, since tree responses to elevated CO2 depend on soil nutritional status.  相似文献   

12.
Torbert  H. A.  Prior  S. A.  Rogers  H. H.  Wood  C. W. 《Plant and Soil》2000,224(1):59-73
A series of studies using major crops (cotton [Gossypium hirsutum L.], wheat [Triticum aestivum L.], grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.]) were reviewed to examine the impact of elevated atmospheric CO2 on crop residue decomposition within agro-ecosystems. Experiments evaluated utilized plant and soil material collected from CO2 study sites using Free Air CO2 Enrichment (FACE) and open top chambers (OTC). A incubation study of FACE residue revealed that CO2-induced changes in cotton residue composition could alter decomposition processes, with a decrease in N mineralization observed with FACE, which was dependent on plant organ and soil series. Incubation studies utilizing plant material grown in OTC considered CO2-induced changes in relation to quantity and quality of crop residue for two species, soybean and grain sorghum. As with cotton, N mineralization was reduced with elevated CO2 in both species, however, difference in both quantity and quality of residue impacted patterns of C mineralization. Over the short-term (14 d), little difference was observed for CO2 treatments in soybean, but C mineralization was reduced with elevated CO2 in grain sorghum. For longer incubation periods (60 d), a significant reduction in CO2-C mineralized per g of residue added was observed with the elevated atmospheric CO2 treatment in both crop species. Results from incubation studies agreed with those from the OTC field observations for both measurements of short-term CO2 efflux following spring tillage and the cumulative effect of elevated CO2 (> 2 years) in this study. Observations from field and laboratory studies indicate that with elevated atmospheric CO2, the rate of plant residue decomposition may be limited by N and the release of N from decomposing plant material may be slowed. This indicates that understanding N cycling as affected by elevated CO2 is fundamental to understanding the potential for soil C storage on a global scale. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Litter decay dynamics of paper birch (Betula papyrifera) were assessed at the Aspen free‐air CO2 enrichment (FACE) facility in northern Wisconsin, USA. Leaf litter was decomposed for 12 months under factorial combinations of 360 vs. 560 μL CO2 L?1, crossed with 36 vs. 55 nL O3 L?1. To differentiate between substrate quality and environment effects, litterbags were placed in their Native Plots of origin or transplanted into the other treatments. CO2 enrichment, regardless of O3 concentration, produced poorer quality litter (high C/N, lignin/N and condensed tannins) than did ambient CO2 (low C/N, lignin/N and condensed tannins). Substrate quality differences were reflected in the mass loss rates (k‐values), which were high for litter generated under ambient CO2 (0.887 year?1) and low for litter generated under elevated CO2 (0.674 year?1). The rate‐retarding effects of CO2 enrichment were neither alleviated nor exacerbated by O3 exposure. Decay rates varied, however, depending on whether litter was placed back into its plot of origin or transplanted to Common Gardens. The results of this study are species specific, but they have important implications for understanding the processes regulating storage of fixed C and the release of CO2 from northern forest ecosystems.  相似文献   

14.

Aims

Litter, as afterlife of plants, plays an important role in driving belowground decomposition processes. Here we tested effects of litter species identity and diversity on carbon (C) and nitrogen (N) dynamics during litter decomposition in N-limited alpine meadow soil from the Qinghai–Tibet Plateau.

Methods

We incubated litters of four meadow species, a sedge (“S”, Kobresia humilis), a grass (“G”, Elymus nutans), a herb (“H”, Saussurea superba), and a legume (“L”, Oxytropis falcata), in monoculture and in mixture with meadow soil. CO2 release was measured 21 times during the incubation, and soil available N and microbial biomass C and N were measured before and after the experiment.

Results

The organic C decay rate did not differ much among soils amended with monocultures or mixtures of litter, except in the H, S, L, and S+H treatments, which had much higher decay rates. Potential decomposable C pools were lowest in the control, highest in the L treatment, and intermediate in the S treatment. Mineralized N was completely immobilized by soil microbes in all treatments except the control, S+L, and S+G+L treatments. Litter mixtures had both additive and non-additive effects on CO2-C emission (mainly antagonistic effects), net N mineralization (mainly synergistic), and microbial biomass C and N (both). Overall, these parameters were not significantly correlated with litter species richness. Similarly, microbial C or N was not significantly correlated with litter N content or C/N. However, cumulative CO2-C emission and net N mineralization were positively correlated with litter N content and negatively correlated with litter C/N.

Conclusions

Litter N content and C/N rather than litter species richness drove the release of CO2-C and net available N in this ecosystem. The antagonistic effects of litter mixtures contributed to a modest release of CO2-C, but their synergistic effects enhanced net available N. We suggest that in alpine meadow communities, balancing species with high and low N contents will benefit soil carbon sequestration and plant competition for available N with soil microbes.  相似文献   

15.

Background and aims

The response of soil respiration (SR) to elevated CO2 is driven by a number of processes and feedbacks. This work aims to i) detect the effect of elevated CO2 on soil respiration during the second rotation of a short rotation forest, at two levels of N availability; and ii) identify the main drivers behind any changes in soil respiration.

Methods

A poplar plantation (POP-EUROFACE) was grown for two rotations of 3 years under elevated CO2 maintained by a FACE (Free Air CO2 Enrichment) technique. Root biomass, litter production and soil respiration were followed for two consecutive years after coppice.

Results

In the plantation, the stimulation of fine root and litter production under elevated CO2 observed at the beginning of the rotation declined over time. Soil respiration (SR) was continuously stimulated by elevated CO2, with a much larger enhancement during the growing (up to 111 %) than in the dormant season (40 %). The SR increase at first appeared to be due to the increase in fine root biomass, but at the end of the 2nd rotation was supported by litter decomposition and the availability of labile C. Soil respiration increase under elevated CO2 was not affected by N availability.

Conclusions

The stimulation of SR by elevated CO2 was sustained by the decomposition of above and belowground litter and by the greater availability of easily decomposable substrates into the soil. In the final year as elevated CO2 did not increase C allocation to roots, the higher SR suggests greater C losses from the soil, thus reducing the potential for C accumulation.  相似文献   

16.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

17.
To assess how heterotrophic microorganisms may alter their activities and thus their CO2‐C return to the atmosphere with elevated CO2 and changing N availability, we examined soil organic matter (SOM) dynamics at the Duke Free Air Carbon Enrichment (FACE) site, after N fertilizer was applied. We measured heterotrophic respiration during early and late stages of SOM mineralization in soil incubations to capture activity on relatively labile and refractory SOM pools. We also measured δ13C of respired CO2‐C and phospholipid fatty acids (PLFAs) during early mineralization stages to track the microbial groups involved in substrate use. We calculated , a measure of δ13CPLFA normalized by respired δ13CO2, to assess microbial function with C substrates formed with elevated CO2 and altered N availability, via the distinct δ13C of the supplemental CO2. We also quantified extracellular enzyme activity (EEA) during labile and recalcitrant SOM mineralization. Early in the incubations, increased N availability reduced heterotrophic CO2‐C release. By the later stages of SOM mineralization, elevated CO2 soils with fertilization had respired 72% of the CO2‐C respired by all other soils. values suggest that fungi in elevated CO2 plots took up C substrates possessing the δ13C signature of recently formed SOM, and added N promoted the activity of Gram‐negative bacteria and reduced that of Gram‐positive bacteria, particularly actinomycetes. Consistent with this, the enzyme responsible for the degradation of peptidoglycan and chitin, compounds produced by Gram‐positive bacteria and fungi, respectively, experienced a decline in activity with N fertilization. If patterns observed in this study with N additions are reversed with progressive N limitation at this site, actinomycetes and other Gram‐positive bacteria responsible for mineralizing relatively recalcitrant substrates may experience increases in their activity. Such shifts in microbial functioning may result in increased turnover of, and C release from, relatively decay‐resistant material.  相似文献   

18.
The effects of elevated atmospheric CO2 (475 μL L?1) on in situ decomposition of plant litter and animal faecal material were studied over 2 years in a free air CO2 enrichment (FACE) facility. The pasture was grazed by sheep and contained a mixture of C3 and C4 grasses, legumes and forbs. There was no effect of elevated CO2 on decomposition within plant species but marked differences between species with faster decomposition in dicots; a group that increased in abundance at elevated CO2. Decomposition of mixed herbage root material occurred at a similar rate to that of leaf litter suggesting that any CO2‐induced increase in carbon allocation to roots would not reduce rates of decomposition. Sheep faeces resulting from a ‘high‐CO2 diet’ decomposed significantly slower during summer but not during winter. The overall outcome of these experiments were explored using scenarios that took account of changes in botanical composition, allocation to roots and the presence of herbivores. In the absence of herbivores, elevated CO2 led to a 15% increase in the rate of mass loss and an 18% increase in the rate of nitrogen (N) release. In the presence of herbivores, these effects were partially removed (11% increase in rate of mass loss and 9% decrease in N release rate) because of the recycling occurring through the animals in the form of faeces.  相似文献   

19.
Studies of the effects of precipitation on litter decomposition and nitrogen mineralization in arid and semiarid environments have demonstrated contradictory results. We conducted a manipulative experiment with rainout shelters in the semiarid Patagonian steppe, aimed at assessing the direct effects of water availability on litter decomposition and net nitrogen mineralization while isolating the indirect effects. We created four levels of precipitation input: control and three levels (30, 55 and 80%) of precipitation interception and we examined litter decomposition and nutrient release of a dominant grass species, Stipa speciosa, inorganic soil nitrogen, and in situ net nitrogen mineralization over two consecutive years. Litter decomposition rates (k, year−1) varied significantly (P < 0.001) among precipitation interception treatments and were positively correlated with incoming annual precipitation (APPT, mm/year) (k = 0.0007 × APPT + 0.137). In contrast, net N mineralization was not correlated with incoming precipitation. Soil NO3 significantly decreased with increasing precipitation input, whereas soil NH4+ concentration did not differ among precipitation interception treatments. Controls of water input on litter decomposition appear to be different from controls on N mineralization in the semiarid Patagonian steppe. We suggest that although water availability affects both the mineralization of C and N, it differentially affects the movement and fate of the inorganic products. A consequence of the accumulation of inorganic N during dry episodes is that periods of maximum water and soil nutrient availability may occur at different times. This asynchrony in the availability of N and water in the soil may explain the observed lags in the response of primary production to increases in water availability.  相似文献   

20.
Elevated CO2, increased nitrogen (N) deposition and increasing species richness can increase net primary productivity (NPP). However, unless there are comparable changes in decomposition, increases in productivity will most likely be unsustainable. Without comparable increases in decomposition nutrients would accumulate in dead organic matter leading to nutrient limitations that could eventually prohibit additional increases in productivity. To address this issue, we measured aboveground plant and litter quality and belowground root quality, as well as decomposition of aboveground litter for one and 2‐year periods using in situ litterbags in response to a three‐way factorial manipulation of CO2 (ambient vs. 560 ppm), N deposition (ambient vs. the addition of 4 g N m−2 yr−1) and plant species richness (one, four, nine and 16 species) in experimental grassland plots. Litter chemistry responded to the CO2, N and plant diversity treatments, but decomposition was much less responsive. Elevated CO2 induced decreases in % N and % lignin in plant tissues. N addition led to increases in % N and decreases in % lignin. Increasing plant diversity led to decreases in % N and % lignin and an increase in % cellulose. In contrast to the litter chemistry changes, elevated CO2 had a much lower impact on decomposition and resulted in only a 2.5% decrease in carbon (C) loss. Detectable responses were not observed either to N addition or to species richness. These results suggest that global change factors such as biodiversity loss, elevated CO2 and N deposition lead to significant changes in tissue quality; however, the response of decomposition is modest. Thus, the observed increases in productivity at higher diversity levels and with elevated CO2 and N fertilization are not matched by an increase in decomposition rates. This lack of coupled responses between production and decomposition is likely to result in an accumulation of nutrients in the litter pool which will dampen the response of NPP to these factors over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号