首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis has recently been implicated in human cholangiocarcinogenesis. This study was designed to examine the mechanisms by which COX-2-derived prostaglandin E2 (PGE2) regulates cholangiocarcinoma cell growth and invasion. Immunohistochemical analysis revealed elevated expression of COX-2 and the epidermal growth factor (EGF) receptor (EGFR) in human cholangiocarcinoma tissues. Overexpression of COX-2 in a human cholangiocarcinoma cell line (CCLP1) increased tumor cell growth and invasion in vitro and in severe combined immunodeficient mice. Overexpression of COX-2 or treatment with PGE2 or the EP1 receptor agonist ONO-DI-004 induced phosphorylation of EGFR and enhanced tumor cell proliferation and invasion, which were inhibited by the EP1 receptor small interfering RNA or antagonist ONO-8711. Treatment of CCLP1 cells with PGE2 or ONO-DI-004 enhanced binding of EGFR to the EP1 receptor and c-Src. Furthermore, PGE2 or ONO-DI-004 treatment also increased Akt phosphorylation, which was blocked by the EGFR tyrosine kinase inhibitors AG 1478 and PD 153035. These findings reveal that the EP1 receptor transactivated EGFR, thus activating Akt. On the other hand, activation of EGFR by its cognate ligand (EGF) increased COX-2 expression and PGE2 production, whereas blocking PGE2 synthesis or the EP1 receptor inhibited EGF-induced EGFR phosphorylation. This study reveals a novel cross-talk between the EP1 receptor and EGFR signaling that synergistically promotes cancer cell growth and invasion.  相似文献   

2.
This study investigated the effects and selectivity of ONO-AE-248, ONO-DI-004, ONO-8711 and ONO-8713 on EP1 and EP3 receptors in human pulmonary vessels. The prostanoid receptors involved in the vasoconstriction of human pulmonary arteries (HPA) are TP and EP3 whereas in pulmonary veins (HPV), this response is associated with TP and EP1. The experiments were performed in presence of BAY u3405 (TP antagonist). ONO-DI-004 (EP1 agonist) and ONO-AE-248 (EP3 agonist), exhibited little or no activity in HPV whereas contractions were induced in HPA with ONO-AE-248. In HPV, the contractions produced with sulprostone (EP1,3 agonist) were blocked in a non competitive manner by both EP1 antagonists (ONO-8711, 30 microM; ONO-8713, 10 microM). The involvement of EP1 mediated contraction in HPV was also observed during the vasorelaxations induced with PGE1 and 5-cis-carba-PGI2. In pre-contracted HPV treated with AH6809 (30 microM; EP1 antagonist) the PGE1 vasorelaxations were potentiated, while unchanged in HPA. These results demonstrate the selectivity of ONO-AE-248 for the EP3 receptor in HPA, ONO-DI-004 was ineffective on the EP1 receptor present in HPV while ONO-8713 was the more potent EP1 antagonist used in this tissue.  相似文献   

3.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

4.
Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles.  相似文献   

5.
We examined the disruptive effect of highly selective agonists for prostaglandin E2 receptor subtypes (EP1, EP2, EP3 and EP4) on the blood-aqueous barrier, and evaluated the inhibitory effect of tetramethylpyrazine, an active component of Ligusticum wallichii, on the elevation of aqueous flare induced by the EP agonists in pigmented rabbits. Highly selective EP agonists (ONO-DI-004, EP1 agonist; ONO-AE1-259-01, EP2 agonist; ONO-AE-248, EP3 agonist; ONO-AE1-329, EP4 agonist) at 12.5 to 250 microg/ml were transcorneally administered to the eyes of pigmented rabbits using a glass cylinder. Animals were pretreated intravenously with tetramethylpyrazine (10 or 30 mg/kg) 30 minutes before application of the EP2 or the EP4 agonist. Aqueous flare was measured using a laser flare-cell meter. Aqueous flare intensity was expressed as the area under the curve (AUC) in arbitrary units. After administration of ONO-AE1-259-01 or ONO-AE1-329, aqueous flare increased and then gradually decreased. ONO-DI-004 and ONO-AE-248 had almost no effect on aqueous flare elevation. The AUC of eyes in rabbits pretreated with tetramethylpyrazine, 10 or 30 mg/kg i.v., was significantly smaller than that of eyes in rabbits treated with ONO-AEI-259-01 alone. The AUC of eyes in rabbits pretreated with tetramethylpyrazine, 10 or 30 mg/kg i.v., was not significantly smaller than that of eyes in rabbits treated with ONO-AEI-329 only. The results indicated that EP2 and EP4 agonists induced aqueous flare elevation in pigmented rabbits, and that tetramethylpyrazine inhibited the aqueous flare elevation induced by the EP2 agonist but did not suppress the elevation induced by the EP4 agonist.  相似文献   

6.
The mechanisms underlying neuropathic pain caused by nerve injury are not well understood. Inflammatory responses in injured nerves are likely to be key contributing factors in the generation and maintenance of neuropathic pain. The pro-inflammatory cytokine interleukin-6 (IL-6) is up-regulated in invading macrophages and has been implicated in the development of neuropathic pain. We previously demonstrated that invading macrophages up-regulate cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) receptors EP1 and EP4, suggesting that PGE2 may affect macrophage function via autocrine or paracrine mechanisms. This study was undertaken to determine whether PGE2 is involved in the up-regulation of IL-6 in invading macrophages. Two weeks following partial sciatic nerve ligation, numerous IL-6 immunoreactive (IR) cell profiles were present in injured nerves. Colocalization of IL-6 with the invading macrophage marker ED1 or with COX2 was frequently observed. IL-6-IR, COX2-IR and ED1-IR cells were present only in cultures derived from injured nerve segments. PGE2 and IL-6 release from cultured cells derived from injured nerves was increased significantly compared with uninjured nerves. Non-selective and selective COX2 inhibitors suppressed PGE2 and IL-6 release. Treatment with PGE2 further enhanced IL-6 release in a concentration- and time-dependent manner. A selective EP4 receptor antagonist L-161982 was able to suppress IL-6 release, whereas an EP1 receptor antagonist, SC19220, was ineffective. Moreover, a protein kinase C inhibitor, calphostin C, dramatically suppressed IL-6 release, whereas a protein kinase A inhibitor H-89 and a Ca2+ chelator EGTA failed. Taken together, our data suggest that PGE2 is involved in mediating the up-regulation of IL-6 occurring in invading macrophages. This action is mediated through an EP4 receptor and the protein kinase C signaling pathway.  相似文献   

7.
Oscillatory activity of retinal ganglion cell (RGC) has been observed in various species. It was reported such oscillatory activity is raised within large neural network and involved in retinal information coding. In the present research, we found an oscillation-like activity in ON–OFF RGC of bullfrog retina, and studied the mechanisms underlying the ON and OFF activities respectively. Pharmacological experiments revealed that the oscillation-like activity patterns in both ON and OFF pathways were abolished by GABA receptor antagonists, indicating GABAergic inhibition is essential for generating them. At the meantime, such activities in the ON and OFF pathways showed different responses to several other applied drugs. The oscillation-like pattern in the OFF pathway was abolished by glycine receptor antagonist or gap junction blocker, whereas that in the ON pathway was not affected. Furthermore, the blockade of the ON pathway by metabotropic glutamate receptor agonist led to suppression of the oscillation-like pattern in the OFF pathway. These results suggest that the ON pathway has modulatory effect on the oscillation-like activity in the OFF pathway. Therefore, the mechanisms underlying the oscillation-like activities in the ON and OFF pathways are different: the oscillation-like activity in the ON pathway is likely caused by GABAergic amacrine cell network, while that in the OFF pathway needs the contributions of GABAergic and glycinergic amacrine cell network, as well as gap junction connections.  相似文献   

8.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

9.
10.
Studies using prostaglandin E receptor (EP) agonists indicate that prostaglandin (PG) E(2) can have anabolic effects through both EP4 and EP2 receptors. We previously found that the anabolic response to a selective EP4 receptor agonist (EP4A, Ono Pharmaceutical) was substantially greater than to a selective EP2 receptor agonist (EP2A) in cultured murine calvarial osteoblastic cells. To further define the role of the EP2 receptor in PG-mediated effects on bone cells, we examined the effects of EP2A and PGE(2) on both calvarial primary osteoblasts (POB) and marrow stromal cells (MSC) cultured from mice with deletion of one (Het) or both (KO) alleles of the EP2 receptor compared to their wild-type (WT) littermates. Deletion of EP2 receptor was confirmed by quantitative real-time PCR, Western blot and immunohistochemistry. The 1 month-old mice used to provide cells in these studies did not show any significant differences in their femurs by static histomorphometry. EP2A was found to enhance osteoblastic differentiation as measured by alkaline phosphatase mRNA expression and activity as well as osteocalcin mRNA expression and mineralization in the WT cell cultures from both marrow and calvariae. The effects were somewhat diminished in cultures from Het mice and abrogated in cultures from KO mice. PGE(2) effects were greater than those of EP2A, particularly in POB cultures and were only moderately diminished in Het and KO cell cultures. We conclude that activation of the EP2 receptor is able to enhance differentiation of osteoblasts, that EP2A is a true selective agonist for this receptor and that PGE(2) has an additional anabolic effect likely mediated by the EP4 receptor.  相似文献   

11.
ABSTRACT: BACKGROUND: Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. RESULTS: NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. CONCLUSION: These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study.  相似文献   

12.
This study was undertaken to test the hypothesis that gamma-aminobutyric acid (GABA) is an endogeneous neurotransmitter regulating the activity of a class of putative nociceptive modulatory neurons (termed "off-cells") in the rostral ventromedial medulla (RVM) of the barbiturate-anesthetized rat. Off-cells, which are believed to correspond to the RVM output neuron that inhibits nociceptive processing at the level of the spinal cord, exhibit an abrupt pause in firing that begins immediately prior to the occurrence of the tail flick response (TF), a nocifensive reflex evoked by application of noxious heat to the tail. Single-unit recording and iontophoretic techniques were used to examine the ability of the GABAA receptor antagonist bicuculline methiodide (BIC) to antagonize selectively the characteristic off-cell pause. Iontophoretic application of BIC (5-30 nA) blocked the TF-related pause in each of the off-cells tested. This effect of BIC was generally slow in onset, and outlasted the period of application by several minutes. BIC iontophoresis also eliminated the cyclic alternation between active and silent periods that is often displayed by off-cells in lightly anesthetized rats. BIC application did not have a consistent effect on the firing of two other classes of RVM neurons ("on-cells" and "neutral cells"). Iontophoretically applied BIC antagonized the inhibitory effect of iontophoretically applied GABA, but not that produced by glycine. The glycine receptor antagonist strychnine did not mimic the action of BIC on off-cell activity. These data demonstrate antagonism of a synaptically evoked response using iontophoretic application of BIC, and provide strong evidence that the inhibitory neurotransmitter GABA mediates the TF-related off-cell pause. Taken together with behavioral experiments demonstrating that a GABA-mediated inhibitory process within RVM is crucial in permitting execution of the TF response, the present observations point to the significant functional relevance of GABA transmission within RVM in modulation of nociception.  相似文献   

13.
14.
Prostaglandin E2 (PGE2), the principal pro-inflammatory prostanoid, is known to play versatile roles in pain transmission via four PGE receptor subtypes, EP1-EP4. We recently demonstrated that continuous production of nitric oxide (NO) by neuronal NO synthase (nNOS) following phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) and NMDA receptor NR2B subunits is essential for neuropathic pain. These phosphorylation and nNOS activity visualized by NADPH-diaphorase histochemistry were blocked by indomethacin, a PG synthesis inhibitor. To clarify the interaction between cyclooxygenase and nNOS pathways in the spinal cord, we examined the effect of EP subtype-selective agonists on NO production. NO formation was stimulated in the spinal superficial layer by EP1, EP3, and EP4 agonists. While the EP1- and the EP4-stimulated NO formation was markedly blocked by MK-801, an NMDA receptor antagonist, the EP3-stimulated one was completely inhibited by H-1152, a Rho-kinase inhibitor. Phosphorylation of MARCKS and NADPH-diaphorase activity stimulated by the EP3 agonist were also blocked by H-1152. These results suggest that PGE2 stimulates NO formation by Rho-kinase via EP3, a mechanism(s) different from EP1 and EP4.  相似文献   

15.
We demonstrated that prostaglandin (PG) E2 aggravates gastric mucosal injury caused by histamine in rats, and investigated using various EP agonists which EP receptor subtype is involved in this phenomenon. Rats were used after 18 hr fasting. Histamine (80 mg/kg) dissolved in 10% gelatin, was given s.c., either alone or in combination with i.v. administration of PGE2 or various EP agonists such as 17-phenyl PGE2 (EP1), butaprost (EP2), sulprostone (EP1/EP3), ONO-NT012 (EP3) and ONO-AE1-329 (EP4). The animals were killed 4 hr later, and the mucosa was examined for lesions. The mucosal permeability was determined using Evans blue (1%). Histamine alone induced few lesions in the gastric mucosa within 4 hr. PGE2 dose-dependently worsened the lesions induced by histamine, the response being inhibited by tripelennamine but not cimetidine. The effect of PGE2 was mimicked by 17-phenyl PGE2 and sulprostone, but not other EP agonists, including EP2, EP3, and EP3/EP4 agonists. The mucosal vascular permeability was slightly increased by histamine, and this response was markedly enhanced by co-administration of 17-phenyl PGE2 as well as PGE2. The mucosal ulcerogenic and vascular permeability responses induced by histamine plus PGE2 were both suppressed by pretreatment with ONO-AE829, the EP1 antagonist. These results suggest that PGE2 aggravates histamine-induced gastric mucosal injury in rats. This action of PGE2 is mediated by EP1 receptors and functionally associated with potentiation of the increased vascular permeability caused by histamine through stimulation of H1-receptors.  相似文献   

16.
We compared the direct effects of selective EP4 and EP2 receptor agonists (EP4A and EP2A) with prostaglandin E(2) (PGE(2)) on the differentiation of cultured murine calvarial osteoblastic cells. EP4A increased alkaline phosphatase activity and osteocalcin mRNA levels in these cultures similar to PGE(2). This effect was seen with both "direct plating" immediately after isolating the cells, or "indirect plating" in which the cells were grown to confluence and replated. EP2A had a smaller effect, significant only in "indirect plating" experiments. All three agents decreased the DNA and protein content in indirect plating experiments, but not in direct plating experiments. We conclude that the anabolic effect of PGE(2) in calvarial osteoblastic cell cultures is largely mediated by activation of the EP4 receptor, while activation of the EP2 receptor is less effective.  相似文献   

17.
There is evidence that the overall effects of prostaglandin E(2) (PGE(2)) on human platelet function are the consequence of a balance between promotory effects of PGE(2) acting at the EP3 receptor and inhibitory effects acting at the EP4 receptor, with no role for the IP receptor. Another prostaglandin that has been reported to affect platelet function is prostaglandin E(1) (PGE(1)), however the receptors that mediate its actions on platelet function have not been fully defined. Here we have used measurements of platelet aggregation and P-selectin expression induced by the thromboxane A(2) mimetic U46619 to compare the effects of PGE(1) and PGE(2) on platelet function. Their effects on vasodilator-stimulated phosphoprotein (VASP) phosphorylation, as a marker of cAMP, were also determined. We also investigated the ability of the selective prostanoid receptor antagonists CAY10441 (IP antagonist), DG-041 (EP3 antagonist) and ONO-AE3-208 (EP4 antagonist) to modify the effects of the prostaglandins on platelet function. The results obtained confirm that PGE(2) interacts with EP3 and EP4 receptors, but not IP receptors. In contrast PGE(1) interacts with EP3 and IP receptors, but not EP4 receptors. In both cases the overall effects on platelet function reflect the balance between promotory and inhibitory effects at receptors that have opposite effects on adenylate cyclase.  相似文献   

18.
PGE(2) is an important cyclooxygenase product that modulates airway inflammatory and smooth muscle responses. Signal transduction is mediated by four EP receptor subtypes that cause distinct effects on cell metabolism. To determine the role of EP(2) receptor activation, we produced a mouse lacking the EP(2) receptor by targeted gene disruption. The effect of aerosolized PGE(2) and other agonists was measured using barometric plethysmography and by measurements of lung resistance in mechanically ventilated mice. Inhalation of PGE(2) inhibited methacholine responses in wild-type but not in mice lacking the EP(2) receptor [EP(2)(-/-)]. After airway constriction was induced by methacholine aerosol, PGE(2) reduced the airway constriction enhanced pause in wild-type mice (from 0.88 +/- 0.15 to 0.55 +/- 0.06) but increased it in EP(2)(-/-) mice (from 0.73 +/- 0. 08 to 1.27 +/- 0.19). Similar results were obtained in mechanically ventilated mice. These data indicate that the EP(2) receptor mediates the bronchodilation effect of PGE(2).  相似文献   

19.
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.  相似文献   

20.
The purpose of this study was to investigate the effect of corticotropin-releasing hormone (CRH) on the expression of the prostaglandin (PG) E(2) EP1 receptor subtype and PGE(2) production in amnion WISH cells (AWC). AWC cultures were incubated with CRH. Culture fluid was collected for PGE(2) measurement, and the cells were collected and analyzed for EP1 protein and mRNA. Immunohistochemical localization of the EP1 receptor was also performed. Incubation of AWC with CRH resulted in a dose-dependent increase (r = 0.97) in the level of EP1 receptor protein (P < 0.001). Coincubation of AWC with CRH and indomethacin resulted in the decreased production of PGE(2) while having no effect on EP1 receptor expression. A significant but not dose-dependent increase in EP1 mRNA expression was also observed (P < 0.01). Immunohistochemical evaluation verified cell membrane localization of the receptor in both stimulated and unstimulated cells and confirmed the increased expression of EP1 receptor in response to CRH. Incubation of AWC with CRH also resulted in increased culture fluid PGE(2) levels (P < 0.01). These results suggest that the role CRH plays in the initiation of labor may also involve the promotion of elevated PGE(2) levels and increased expression of the EP1 receptor in amnion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号