首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

3.
STAT5A is a molecular regulator of proliferation, differentiation, and apoptosis in lymphohematopoietic cells. Here we show that STAT5A can serve as a functional substrate of Bruton's tyrosine kinase (BTK). Purified recombinant BTK was capable of directly binding purified recombinant STAT5A with high affinity (K(d) = 44 nm), as determined by surface plasmon resonance using a BIAcore biosensor system. BTK was also capable of tyrosine-phosphorylating ectopically expressed recombinant STAT5A on Tyr(694) both in vitro and in vivo in a Janus kinase 3-independent fashion. BTK phosphorylated the Y665F, Y668F, and Y682F,Y683F mutants but not the Y694F mutant of STAT5A. STAT5A mutations in the Src homology 2 (SH2) and SH3 domains did not alter the BTK-mediated tyrosine phosphorylation. Recombinant BTK proteins with mutant pleckstrin homology, SH2, or SH3 domains were capable of phosphorylating STAT5A, whereas recombinant BTK proteins with SH1/kinase domain mutations were not. In pull-down experiments, only full-length BTK and its SH1/kinase domain (but not the pleckstrin homology, SH2, or SH3 domains) were capable of binding STAT5A. Ectopically expressed BTK kinase domain was capable of tyrosine-phosphorylating STAT5A both in vitro and in vivo. BTK-mediated tyrosine phosphorylation of ectopically expressed wild type (but not Tyr(694) mutant) STAT5A enhanced its DNA binding activity. In BTK-competent chicken B cells, anti-IgM-stimulated tyrosine phosphorylation of STAT5 protein was prevented by pretreatment with the BTK inhibitor LFM-A13 but not by pretreatment with the JAK3 inhibitor HI-P131. B cell antigen receptor ligation resulted in enhanced tyrosine phosphorylation of STAT5 in BTK-deficient chicken B cells reconstituted with wild type human BTK but not in BTK-deficient chicken B cells reconstituted with kinase-inactive mutant BTK. Similarly, anti-IgM stimulation resulted in enhanced tyrosine phosphorylation of STAT5A in BTK-competent B cells from wild type mice but not in BTK-deficient B cells from XID mice. In contrast to B cells from XID mice, B cells from JAK3 knockout mice showed a normal STAT5A phosphorylation response to anti-IgM stimulation. These findings provide unprecedented experimental evidence that BTK plays a nonredundant and pivotal role in B cell antigen receptor-mediated STAT5A activation in B cells.  相似文献   

4.
In this study, DNA binding and tyrosine phosphorylation of STAT5A and STAT5B were compared with their subcellular localization determined using indirect immunofluorescence microscopy. Following prolactin activation, both STAT5A and STAT5B were rapidly translocated into the nucleus and displayed a detergent-resistant, punctate nuclear staining pattern. Similar to prolactin induction, src activation resulted in tyrosine phosphorylation and DNA binding of both STAT5A and STAT5B. However, nuclear translocation of only STAT5B but not STAT5A was observed. This selective nuclear translocation appears to be mediated via the carboxyl-terminal sequences in STAT5B. Furthermore, overexpression of a dominant negative kinase-inactive mutant of JAK2 prevented prolactin-induced tyrosine phosphorylation and nuclear translocation of STAT5A and STAT5B but did not block src kinase activation and nuclear translocation of STAT5B. In co-transfection assays, prolactin-mediated activation but not src kinase-mediated activation of STAT5B resulted in the induction of a beta-casein promoter-driven reporter construct. These results suggest that STAT5 activation by src may occur by a mechanism distinct from that employed in cytokine activation of the JAK/STAT pathway, resulting in the selective nuclear translocation of STAT5B.  相似文献   

5.
6.
Reactive oxygen species initiate multiple signal transduction pathways including tyrosine kinase signaling. Here, we demonstrate tyrosine phosphorylation of EGF receptor, STAT3, and, to a lesser extent, STAT1 upon H2O2 treatment of HER14 cells (NIH3T3 fibroblasts transfected with full-length EGF receptor). Maximum phosphorylation levels were observed in 5 min of stimulation at 1-2 mM H2O2. It has been shown that the intrinsic EGF-receptor tyrosine kinase is responsible for the receptor phosphorylation upon H2O2 stimulation. STAT3 and STAT1 activation in HER14 cells was demonstrated to depend on EGF receptor kinase activity, rather than JAK2 activity, while in both K721A and CD126 cells (NIH3T3 transfected with kinase-dead EGF receptor, and EGF receptor lacking major autophosphorylation sites, respectively) STAT1 and STAT3 tyrosine phosphorylation requires JAK2 kinase activity. Furthermore, STAT3 is constitutively phosphorylated in K721A and CD126 cells, and STAT1 H2O2-stimulated activation in these cells is much more prominent than in HER14. In all the cell lines used, Src-kinase activity was demonstrated to be unnecessary for ROS-initiated phosphorylation of STATs. Herein, we postulate that EGF receptor plays a role in H2O2-induced STAT activation in HER14 cells. Our data also prompted a hypothesis of constitutive inhibition of JAK2-dependent STAT activation in this cell line.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.  相似文献   

18.
19.
20.
Previous studies indicate that STAT5 expression is required for mast cell development, survival, and IgE-mediated function. STAT5 tyrosine phosphorylation is swiftly and transiently induced by activation of the high affinity IgE receptor, FcεRI. However, the mechanism for this mode of activation remains unknown. In this study we observed that STAT5 co-localizes with FcεRI in antigen-stimulated mast cells. This localization was supported by cholesterol depletion of membranes, which ablated STAT5 tyrosine phosphorylation. Through the use of various pharmacological inhibitors and murine knock-out models, we found that IgE-mediated STAT5 activation is dependent upon Fyn kinase, independent of Syk, PI3K, Akt, Bruton's tyrosine kinase, and JAK2, and enhanced in the context of Lyn kinase deficiency. STAT5 immunoprecipitation revealed that unphosphorylated protein preassociates with Fyn and that this association diminishes significantly during mast cell activation. SHP-1 tyrosine phosphatase deficiency modestly enhanced STAT5 phosphorylation. This effect was more apparent in the absence of Gab2, a scaffolding protein that docks with multiple negative regulators, including SHP-1, SHP-2, and Lyn. Targeting of STAT5A or B with specific siRNA pools revealed that IgE-mediated mast cell cytokine production is selectively dependent upon the STAT5B isoform. Altogether, these data implicate Fyn as the major positive mediator of STAT5 after FcεRI engagement and demonstrate importantly distinct roles for STAT5A and STAT5B in mast cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号