首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to determine intrarater reliability of the 1 repetition maximum (1RM) estimation for shoulder internal rotation. The accuracy of the estimated 1RM was determined by establishing the actual 1RM. Fifteen subjects were positioned supine with the shoulder in 0 degrees abduction (position 1) and prone with the shoulder in 90 degrees abduction (position 2). Subjects were placed in both testing positions and performed resisted shoulder internal rotation. A 1RM estimation equation was used to estimate shoulder internal rotation strength. After 1 week, procedures were repeated and intrarater reliability was calculated. One week after 1RM estimation procedures were completed, the accuracy of an estimated 1RM was determined by establishing an actual 1RM. The results indicated excellent intrarater reliability for position 1 (intraclass correlation coefficient [ICC] = 0.99) and position 2 (ICC = 0.96). The correlation coefficients for accuracy indicated excellent concurrent validation was attained for position 1 (ICC = 0.99) and position 2 (ICC = 0.97). Shoulder internal rotation 1RM estimation appears to be reliable and accurate. Clinicians may use submaximal loads to estimate the 1RM and decrease the possibility of injury during actual 1RM strength testing.  相似文献   

2.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

3.
The purpose of this study was to determine whether there is a linear relationship between the squat and a variety of quadriceps resistance training exercises for the purpose of creating prediction equations for the determination of quadriceps exercise loads based on the squat load. Six-repetition maximums (RMs) of the squat, as well as four common resistance training exercises that activate the quadriceps including the deadlift, lunge, step-up, and leg extension, were determined for each subject. Subjects included 21 college students. Data were evaluated using linear regression analysis to predict quadriceps exercise loads from 6RM squat data and were cross-validated with the prediction of sum of squares statistic. Analysis of the data revealed that the squat is a significant predictor of loads for the dead lift (R2 = 0.81, standard error of the estimate [SEE] = 12.50 kg), lunge (R2 = 0.62, SEE = 12.57 kg), step-up (R2 = 0.71, SEE = 9.58 kg), and leg extension (R2=0.67, SEE = 10.26 kg) exercises. Based on the analysis of the data, the following 6RM prediction equations were devised for each exercise: (a) deadlift load = squat load (0.83) + 14.92 kg, (b) lunge load = squat load (0.52) + 14.82 kg, (c) step-up load = squat load (0.50) + 3.32 kg, and (d) leg extension load = squat load (0.48) + 9.58 kg. Results from testing core exercises such as the squat can provide useful data for the assignment of loads for other exercises.  相似文献   

4.
The purpose of this study was to investigate the effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. Pre-exhaustion exercise, a technique frequently used by weight trainers, involves combining a single-joint exercise immediately followed by a related multijoint exercise (e.g., a knee extension exercise followed by a leg press exercise). Seventeen healthy male subjects performed 1 set of a leg press exercise with and without pre-exhaustion exercise, which consisted of 1 set of a knee extension exercise. Both exercises were performed at a load of 10 repetitions maximum (10 RM). Electromyography (EMG) was recorded from the rectus femoris, vastus lateralis, and gluteus maximus muscles simultaneously during the leg press exercise. The number of repetitions of the leg press exercise performed by subjects with and without pre-exhaustion exercise was also documented. The activation of the rectus femoris and the vastus lateralis muscles during the leg press exercise was significantly less when subjects were pre-exhausted (p < 0.05). No significant EMG change was observed for the gluteus maximus muscle. When in a pre-exhausted state, subjects performed significantly (p < 0.001) less repetitions of the leg press exercise. Our findings do not support the popular belief of weight trainers that performing pre-exhaustion exercise is more effective in order to enhance muscle activity compared with regular weight training. Conversely, pre-exhaustion exercise may have disadvantageous effects on performance, such as decreased muscle activity and reduction in strength, during multijoint exercise.  相似文献   

5.
The purpose of this study was to investigate whether changes in maximal strength and power output occurred over time in the absence of strength and power training in novice weight trainers. It also investigated whether differences existed between upper- and lower-body assessments and unilateral and bilateral assessments. The power output and maximal strength (1 repetition maximum [1RM]) of 10 male novice subjects were measured on 4 occasions, each assessment 7-10 days apart. The exercises used to measure the upper- and lower-body strength and power outputs were the bench press and supine squat, respectively. Significant (p < 0.05) changes in unilateral (9.8-16.8%) and bilateral 1RM (6.8-15.0%) leg strength were found, the first assessment being significantly different from all other assessments and assessment 2 significantly different from assessment 4. Changes in the upper body (10-13.6%) were also observed. The only significant difference was between assessment 1 and the other testing occasions. No differences in power output were observed for both the upper and lower body during the study. It would seem that considerable changes in maximal strength occur rapidly and in the absence of any formal strength training program in novice weight trainers.  相似文献   

6.
The purpose of the present study was first to examine the reliability of isometric squat (IS) and isometric forward hack squat (IFHS) tests to determine if repeated measures on the same subjects yielded reliable results. The second purpose was to examine the relation between isometric and dynamic measures of strength to assess validity. Fourteen male subjects performed maximal IS and IFHS tests on 2 occasions and 1 repetition maximum (1-RM) free-weight squat and forward hack squat (FHS) tests on 1 occasion. The 2 tests were found to be highly reliable (intraclass correlation coefficient [ICC](IS) = 0.97 and ICC(IFHS) = 1.00). There was a strong relation between average IS and 1-RM squat performance, and between IFHS and 1-RM FHS performance (r(squat) = 0.77, r(FHS) = 0.76; p < 0.01), but a weak relation between squat and FHS test performances (r < 0.55). There was also no difference between observed 1-RM values and those predicted by our regression equations. Errors in predicting 1-RM performance were in the order of 8.5% (standard error of the estimate [SEE] = 13.8 kg) and 7.3% (SEE = 19.4 kg) for IS and IFHS respectively. Correlations between isometric and 1-RM tests were not of sufficient size to indicate high validity of the isometric tests. Together the results suggest that IS and IFHS tests could detect small differences in multijoint isometric strength between subjects, or performance changes over time, and that the scores in the isometric tests are well related to 1-RM performance. However, there was a small error when predicting 1-RM performance from isometric performance, and these tests have not been shown to discriminate between small changes in dynamic strength. The weak relation between squat and FHS test performance can be attributed to differences in the movement patterns of the tests  相似文献   

7.
The purpose of this research was to devise prediction equations whereby a 10 repetition maximum (10RM) for the free weight parallel squat could be predicted using the following predictor variables: 10RM for the 45 degrees angled leg press, body mass, and limb length. Sixty men were tested over a 3-week period, with 1 testing session each week. During each testing session, subjects performed a 10RM for the free weight parallel squat and 45 degrees angled leg press. Stepwise multiple regression analysis showed leg press mass lifted to be a significant predictor of squat mass lifted for both the advanced and the novice groups (p < 0.05). Leg press mass lifted accounted for approximately 25% of the variance in squat mass lifted for the novice group and 55% of the variance in squat mass lifted for the advanced group. Limb length and body mass were not significant predictors of squat mass lifted for either group. The following prediction equations were devised: (a) novice group squat mass = leg press mass (0.210) + 36.244 kg, (b) advanced group squat mass = leg press mass (0.310) + 19.438 kg, and (c) subject pool squat mass = leg press mass (0.354) + 2.235 kg. These prediction equations may save time and reduce the risk of injury when switching from the leg press to the squat exercise.  相似文献   

8.
Adequately describing the functional consequences of unweighting (e.g., bed rest, immobilization, spaceflight) requires assessing diverse indices of neuromuscular function (i.e., strength, power, endurance, central activation, force steadiness). Additionally, because unweighting increases the susceptibility of muscle to damage, testing should consider supplementary safety features. The purpose of this study was to develop a test battery for quickly assessing diverse indices of neuromuscular function. Commercially available exercise equipment was modified to include data acquisition hardware (e.g., force plates, position transducers) and auxiliary safety hardware (e.g., magnetic brakes). Ten healthy, ambulatory subjects (31 ± 5 years, 173 ± 11 cm, 73 ± 14 kg) completed a battery of lower- and upper-body neuromuscular function tests on 3 occasions separated by at least 48 hours. The battery consisted of the following tests, in order: (1) knee extension central activation, (2) knee extension force steadiness, (3) leg press maximal strength, (4) leg press maximal power, (5) leg press power endurance, (6) bench press maximal strength, (7) bench press force steadiness, (8) bench press maximal power, and (9) bench press power endurance. Central activation, strength, rate of force development, maximal power, and power endurance (total work) demonstrated good-to-excellent measurement reliability (SEM = 3-14%; intraclass correlation coefficient [ICC] = 0.87-0.99). The SEM of the force steadiness variables was 20-35% (ICC = 0.20-0.60). After familiarization, the test battery required 49 ± 6 minutes to complete. In conclusion, we successfully developed a test battery that could be used to quickly and reliably assess diverse indices of neuromuscular function. Because the test battery involves minimal eccentric muscle actions and impact forces, the potential for muscle injury has likely been reduced.  相似文献   

9.
Our previous study showed that relatively low-intensity (approximately 50% one-repetition maximum [1RM]) resistance training (knee extension) with slow movement and tonic force generation (LST) caused as significant an increase in muscular size and strength as high-intensity (approximately 80% 1RM) resistance training with normal speed (HN). However, that study examined only local effects of one type of exercise (knee extension) on knee extensor muscles. The present study was performed to examine whether a whole-body LST resistance training regimen is as effective on muscular hypertrophy and strength gain as HN resistance training. Thirty-six healthy young men without experience of regular resistance training were assigned into three groups (each n = 12) and performed whole-body resistance training regimens comprising five types of exercise (vertical squat, chest press, latissimus dorsi pull-down, abdominal bend, and back extension: three sets each) with LST (approximately 55-60% 1RM, 3 seconds for eccentric and concentric actions, and no relaxing phase); HN (approximately 80-90% 1RM, 1 second for concentric and eccentric actions, 1 second for relaxing); and a sedentary control group (CON). The mean repetition maximum was eight-repetition maximum in LST and HN. The training session was performed twice a week for 13 weeks. The LST training caused significant (p < 0.05) increases in whole-body muscle thickness (6.8 +/- 3.4% in a sum of six sites) and 1RM strength (33.0 +/- 8.8% in a sum of five exercises) comparable with those induced by HN training (9.1 +/- 4.2%, 41.2 +/- 7.6% in each measurement item). There were no such changes in the CON group. The results suggest that a whole-body LST resistance training regimen is as effective for muscular hypertrophy and strength gain as HN resistance training.  相似文献   

10.
The purpose of this study was to examine the real-time intersession and interrater reliability of the functional movement screen (FMS). The overall study consisted of 19 volunteer civilians (12 male, 7 female). The intersession reliability consisted of 12 men and 7 women, whereas 10 men and 6 women participated in the interrater reliability test session. Two raters (A and B) were involved in the interrater reliability aspect of this study. The FMS includes 7 tests: deep squat (DS), hurdle step (HS), in-line lunge (IL), shoulder mobility (SM), active straight leg raise (ASLR), trunk stability push-up (TSPU), and rotary stability (RS). Researchers analyzed the data via intraclass correlation (ICC). To determine the reliability of the intersession scoring of the FMS and the intrasession interrater scoring of the FMS a 2-way mixed effects model intraclass correlation coefficient (ICC(3,1)) was used for the continuous data, whereas a weighted Cohen's kappa (κ) was used for the categorical data. The dependent variables were FMS total score (0-21 scale) and associated tests were DS, HS, IL, SM, ASLR, TSPU, and RS. Intersession reliability (ICC, SEM) and κ were as follows: FMS total score (0.92, 0.51), DS (κ = 0.69), HS (κ = 0.16), IL (κ = 0.69), SM (κ = 0.84), ASLR (κ = 0.69), TSPU (κ = 0.77), and RS (no covariance). Interrater reliability (ICC, SEM) and κ were as follows: FMS total score (0.98, 0.25), DS (κ = 1.0), HS (κ = 0.33), IL (κ = 0.88), SM (κ = 0.90), ASLR (κ = 0.88), TSPU (κ = 0.75), and RS (no covariance). The FMS total scores displayed high intersession and interrater reliabilities. Finally, with the exception of HS, all tasks displayed moderate to high intersession reliability and good to high interrater reliability.  相似文献   

11.
This study aimed to clarify the relationships between isometric squat (IS) using a back dynamometer and 1 repetition maximum (1RM) squat for maximum force and muscle activities and to examine the effectiveness of a 1RM estimation method based on IS. The subjects were 15 young men with weight training experience (mean age 20.7 ± 0.8 years, mean height 171.3 ± 4.4 cm, mean weight 64.4 ± 8.4 kg). They performed the IS with various stance widths and squat depths. The measured data of exerted maximum force and the action potential of the agonist muscles were compared with the 1RM squat data. The exerted maximum force during IS was significantly larger in wide stance (140% shoulder width) than in narrow stance (5-cm width). The maximum force was significantly larger with decreased knee flexion. As for muscle activity, the % root mean square value of muscle electric potential of the rectus femoris and the vastus lateralis tended to be higher in wide stance. As for exerted maximum force, wide stance and parallel depth in IS showed a significant and high correlation (r = 0.73) with 1RM squat. Simple linear regression analysis revealed a significant estimated regression equation [Y = 0.992X + 30.3 (Y:1RM, X:IS)]. However, the standard error of an estimate value obtained by the regression equation was very large (11.19 kg). In conclusion, IS with wide stance and parallel depth may be useful for the estimation of 1RM squat. However, estimating a 1RM by IS using a back dynamometer may be difficult.  相似文献   

12.
The purpose of this study was to (a) develop a functional field test to assess the role of the core musculature and its impact on sport performance in an athletic population and (b) develop a functional field test to determine how well the core can transfer forces from the lower to the upper extremities. Twenty-five DI collegiate football players performed medicine ball throws (forward, reverse, right, and left) in static and dynamic positions. The results of the medicine ball throws were compared with several athletic performance measurements: 1 repetition maximum (1RM) squat, squat kg/bw, 1RM bench press, bench kg/bw, countermovement vertical jump (CMJ), 40-yd dash (40 yd), and proagility (PrA). Push press power (PWR) was used to measure the transfer of forces through the body. Several correlations were found in both the static and dynamic medicine ball throws when compared with the performance measures. Static reverse correlated with CMJ (r = 0.44), 40 yd (r = 0.5), and PrA (r = 0.46). Static left correlated with bench kg/bw (0.42), CMJ (0.44), 40 yd (0.62), and PrA (0.59). Static right also correlated with bench kg/bw (0.41), 40 yd (0.44), and PrA (0.65). Dynamic forward (DyFw) correlated with the 1RM squat (r = 0.45) and 1RM bench (0.41). Dynamic left and Dynamic right correlated with CMJ, r = 0.48 and r = 0.40, respectively. Push press power correlated with bench kg/bw (0.50), CMJ (0.48), and PrA (0.48). A stepwise regression for PWR prediction identified 1RM squat as the best predictor. The results indicate that core strength does have a significant effect on an athlete's ability to create and transfer forces to the extremities. Currently, plank exercises are considered an adequate method of training the core for athletes to improve core strength and stability. This is a problem because it puts the athletes in a nonfunctional static position that is very rarely replicated in the demands of sport-related activities. The core is the center of most kinetic chains in the body and should be trained accordingly.  相似文献   

13.
Objective: the purpose of this study was to compare vastus medialis obliquus (VMO) and vastus lateralis (VL) activity while performing a mini-squat with and without isometric hip adduction.

Design and setting: a repeated measures within subjects design was used. Subjects performed two sets of three repetitions of a traditional mini-squat and a mini-squat with concurrent hip adduction (squeeze).

Subjects: 20 recreationally active subjects (10 men, 10 women AGE=28.10±5.91 years, HEIGHT=170.94±11.03 cm, MASS=72.32±16.66 kg) with no history of patellofemoral pain (PFP), quadriceps injury, or other knee injury participated in the study.

Measurements: the EMG signal of the VMO and VL was recorded bilaterally during both exercises. EMG data were normalized to the maximal voluntary isometric contraction (MVIC) of the quadriceps produced during seated, isometric knee extension.

Results: results of repeated measures ANOVA's revealed that the squeeze squat produced significantly greater VMO and VL activity than the traditional squat (p=0.02). For both the traditional and squeeze squats, intrasession reliability from the first to the second set was calculated using intraclass correlation coefficient (ICC) formula (3:1) bilaterally for both the VMO and the VL. All ICC values were greater than 0.9.

Conclusion: combining isometric hip adduction with a mini-squat exercise significantly increases the activity of the quadriceps. Performing mini-squats with isometric hip adduction will be beneficial to patellofemoral patients as they increase quadriceps activity, however, based on our data we cannot conclude that this exercise preferentially recruits the VMO. Further research is needed to determine the exact mechanism by which quadriceps function is altered.  相似文献   


14.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

15.
We investigated the effect of low-intensity resistance exercise training on muscular size and strength where the interset rest period was shortened so as to reduce the metabolite clearance. Female subjects (aged 45.4 +/- 9.5 years, n = 10) performed bilateral knee extension exercises in a seated position on an isotonic leg extension machine. The exercise sessions consisted of 3 sets of exercise at a mean intensity of approximately 50% 1RM with an interset rest period of 30 seconds and was performed twice a week for a period of 12 weeks. The strength and the cross-sectional area (CSA) of the knee extensors and flexors were examined with an isokinetic dynamometer and magnetic resonance imaging (MRI), respectively. The CSAs of the knee extensors and flexors increased by 7.1 +/- 1.6% (p < 0.01, Wilcoxon signed rank test) and 2.5 +/- 1.4% (not significant), respectively. Isometric and isokinetic strengths increased significantly (p < 0.01) at all velocities examined, whereas no significant change was observed in those of knee flexors. These results indicate that a low-intensity resistance exercise with a short interset rest period is substantially effective in inducing muscular hypertrophy and concomitant increase in strength.  相似文献   

16.
The objective of this study was to determine if salivary free testosterone can predict an athlete's performance during back squats and sprints over time and the influence baseline strength on this relationship. Ten weight-trained male athletes were divided into 2 groups based on their 1 repetition maximum (1RM) squats, good squatters (1RM > 2.0 × body weight, n = 5) and average squatters (1RM < 1.9 × body weight, n = 5). The good squatters were stronger than the average squatters (p < 0.05). Each subject was assessed for squat 1RM and 10-m sprint times on 10 separate occasions over a 40-day period. A saliva sample was collected before testing and assayed for free testosterone and cortisol. The pooled testosterone correlations were strong and significant in the good squatters (r = 0.92 for squats, r = -0.87 for sprints, p < 0.01), but not significant for the average squatters (r = 0.35 for squats, r = -0.18 for sprints). Cortisol showed no significant correlations with 1RM squat and 10-m sprint performance, and no differences were identified between the 2 squatting groups. In summary, these results suggest that free testosterone is a strong individual predictor of squat and sprinting performance in individuals with relatively high strength levels but a poor predictor in less strong individuals. This information can assist coaches, trainers, and performance scientists working with stronger weight-trained athletes, for example, the preworkout measurement of free testosterone could indicate likely training outcomes or a readiness to train at a certain intensity level, especially if real-time measurements are made. Our results also highlight the need to separate group and individual hormonal data during the repeated testing of athletes with variable strength levels.  相似文献   

17.
Eighteen elite male power lifters performed 1-repetition maximum (1RM) and submaximal strength tests (70, 80, and 90% 1RM) to develop prediction equations for the squat (SQ), bench press (BP), and deadlift (DL) exercises. For each equation, stepwise multiple-regression prediction procedure included the maximum number of repetitions (REPS) completed at a given %1RM weight (REPWT). For SQ and BP the 70% 1RM yielded the best 1RM prediction equations: (1RM SQ [kg]) = 159.9 + (0.103 x REPS x REPWT) + (-11.552 x REPS), with a standard error of the estimate (SEE) of 5.06 kg; (1RM BP [kg]) = 90.66 + (0.085 x REPS x REPWT) + (-5.306 x REPS), with an SEE of 2.69 kg. For DL the 80% 1RM yielded the best prediction equation: (1RM DL [kg]) = 156.08 + (0.098 x REPS x REPWT) + (-12.106 x REPS), with an SEE of 4.97 kg. The athlete's years lifted (number of years of power lifting experience) was highly correlated with the 1RM strength for BP and DL (r > 0.70) but not for SQ (r < 0.70). No bodily structural dimension variable had a significant correlation with 1RM strength (r < 0.70). The results of this study indicate that 1RM SQ, BP, and DL may be predicted with an acceptable degree of accuracy in elite male high-school power lifter subjects.  相似文献   

18.
To better understand the reliability of unfamiliar multijoint strength tests, 16 resistance-trained men performed maximum velocity uni- (1 leg [1L]) and bilateral (2 legs [2L]) lifts on an unfamiliar semiprone leg squat machine with loads equivalent to 40 and 70% of maximum isometric force on 2 separate occasions. Peak force was highly reproducible between testing occasions at the heavy load under both uni- and bilateral conditions (intraclass correlation coefficient [ICC](1L70%) = 0.91, ICC(2L70%) = 0.92), was slightly reduced in the light load bilateral condition (ICC(2L40%) = 0.85), and was significantly (p < 0.05) reduced in the light load unilateral condition (ICC(1L40%) = 0.57). Test reliability was not related to total load lifted (2L 70% > 1L 70% > 2L 40% > 1L 40%) or to the peak force developed during the tests (2L 70% > 1L 70% = 2L 40% > 1L 40%), but it was somewhat related to the time taken to attain peak force (2L 70% = 1L 70% > 2L 40% > 1L 40%). To obtain reliable strength data from athletes, more familiarization seems to be needed when they perform modified versions of common multijoint strength tests, or unfamiliar strength tests, under light load, unilateral conditions. The marked differences in reliability resulting from variation in loading conditions suggests that the reliability of a test needs to be reestablished when it is modified, before it is used to assess athlete/subject strength performance.  相似文献   

19.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

20.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号