首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
Although Wnt/β-catenin/Tcf signaling pathway has been shown to be a crucial factor in the development of many cancers, little is known about its role in glioma malignancy. In the present study, we report the first evidence that Wnt/β-catenin/Tcf signaling pathway is constitutively activated in experimental gliomas induced by single transplacental dose of N-ethyl-N-nitrosourea (ENU). In the present study we analyzed ENU induced rat gliomas of different stages (P90, P135 and P180) for the expression of β-catenin, Lef1, Tcf4 and their targets c-Myc, N-Myc and cyclin D1. Western blot analysis revealed upregulation of β-catenin, Lef1, Tcf4, c-Myc, N-Myc and cyclin D1 in gliomas compared to controls and their levels were progressively increased from initial stage (P90) to progression stage (P180). In consistent with this, immunohistochemistry revealed the cytoplasmic and nuclear accumulation of β-catenin, and nuclear positivity was evident for Lef1, Tcf4, c-Myc, N-Myc and cyclin D1. Based on these results, we conclude that Wnt/β-catenin pathway may play a major role in the tumorigenesis and tumor progression in ENU induced rat gliomas.  相似文献   

2.
3.
Although pilocytic and diffuse grade II astrocytomas considered as low-grade tumors, the distinction between them is still a major clinical problem. Previously we reported the activation of Wnt/β-catenin/Tcf signaling pathway in diffuse astrocytomas, however its role in pilocytic astrocytomas is not well understood. In this study, we investigated the Wnt/β-catenin/Tcf pathway in pilocytic astrocytomas and compared with diffuse astrocytomas. We observed the differential expression of β-catenin, Tcf4, Lef1 and c-Myc in astrocytomas particularly higher levels were observed in pilocytic astrocytomas and GBM while very little expression was documented in grade II tumors. Further, immunohistochemical analysis revealed the strong positivity of β-catenin, Tcf4, Lef1 and c-Myc in pilocytic astrocytomas than that of grade II tumors and also exhibited the strong positivity in vascular endothelial cells of pilocytic astrocytomas and GBM. Hence, Wnt/β-catenin/Tcf signaling pathway is differentially expressed in astrocytomas, activation of this pathway might be helpful in separating pilocytic astrocytomas from low-grade diffuse astrocytomas.  相似文献   

4.
The animal-vegetal axis of sea urchin embryos is morphologically apparent at the 16-cell stage, when the mesomeres, macromeres, and micromeres align along it. At this stage, the micromere is the only autonomously specified blastomere that functions as a signaling center. We used a subtraction PCR survey to identify the homeobox gene micro1 as a micromere-specific gene. The micro1 gene is a representative of a novel family of paired-like class homeobox genes, along with PlHbox12 from Paracentrotus lividus and pmar1 from Strongylocentrotus purpuratus. In the present study, we showed that micro1 is a multicopy gene with six or more polymorphic loci, at least three of which are clustered in a 30-kb region of the genome. The micro1 gene is transiently expressed during early cleavage stages in the micromere. Recently, nuclear -catenin was shown to be essential for the specification of vegetal cell fates, including micromeres, and the temporal and spatial coincidence of micro1 expression with the nuclear entry of -catenin is highly suggestive. We demonstrated that micro1 is a direct target of -catenin. In addition, we showed that micro1 is necessary and sufficient for micromere specification. These observations on the structure, regulation, and function of micro1 lead to the conclusion that micro1 and pmar1 (and potentially PlHbox12) are orthologous.  相似文献   

5.
6.
The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.  相似文献   

7.
 The mechanism of early dorso-ventral axis specification in zebrafish embryos is not well understood. While β-catenin has been clearly implicated as a determinant of the axis, the factors upstream and downstream of β-catenin in this system are not defined. Unlike in Xenopus, where a sperm-induced cortical rotation is used to localize β-catenin on the future dorsal side of the embryo, zebrafish do not have an obviously similar morphogenetic movement. Recently, a GSK-3 (Glycogen Synthase Kinase-3) binding protein (GBP) was identified as a novel member of the Wnt pathway required for maternal dorsal axis formation in Xenopus. GBP stabilizes β-catenin levels by inhibiting GSK-3 and potentially provides a link between cortical rotation and β-catenin regulation. Since zebrafish may use a different mechanism for regulating β-catenin, we asked whether zebrafish also express a maternal GBP. We report the isolation of the zebrafish GBP gene and show that it is maternally expressed and is present as mRNA ubiquitously throughout early embryonic development. Over-expression of zebrafish GBP in frogs and fish leads to hyper-dorsalized phenotypes, similar to the effects resulting from over-expression of β-catenin, indicating that components upstream of β-catenin are conserved between amphibians and teleosts. We also examined whether Tcf (T cell factor) functions in zebrafish embryos. As in frogs, ectopic expression of a dominant negative form of XTcf-3 ventralizes zebrafish embryos. In addition, ectopic β-catenin expression activates the promoter of the Tcf-dependent gene siamois, indicating that the step immediately downstream of β-catenin is also conserved between fish and frogs. Received: 23 July 1998 / Accepted: 2 September 1998  相似文献   

8.
9.
 Embryos acquire axial properties (e.g., the animal-vegetal, dorsoventral and bilateral axes) at various times over the course of their normal developmental programs. In the spiral-cleaving nemertean, Cerebratulus lacteus, lineage tracing studies have shown that the dorsoventral axis is set up prior to the first cleavage division; however, blastomeres isolated at the two-cell stage will regulate to form apparently perfect, miniature pilidium larvae. We have examined the nature of axial specification in this organism by determining whether partial embryos retain the original embryonic/larval axial properties of the intact embryo, or whether new axial relationships are generated as a consequence of the regulatory process. Single blastomeres in two-cell stage embryos were injected with lineage tracer, and were then bisected along the second cleavage plane at the four-cell stage. Thus, the relationship between the plane of the first cleavage division and various developmental axes could be followed throughout development in the ”half-embryos”. While some embryo fragments appear to retain their original animal-vegetal and dorsoventral axes, many fragments generate novel axial properties. These results indicate that axial properties set up and used during normal development in C. lacteus can be completely reorganized during the course of regulation. While certain embryonic axes, such as the animal-vegetal and dorsoventral axes, appear to be set up prior to first cleavage, these axes and associated cell fates are not irreversibly fixed until later stages of development in normal intact embryos. In C. lacteus, the process whereby these properties are ultimately determined is apparently controlled by complex sets of cell-cell interactions. Received: 11 October 1996 / Accepted: 21 February 1997  相似文献   

10.
The molecular mechanisms guiding the positioning of the ectoderm-endoderm boundary along the animal-vegetal axis of the sea urchin embryo remain largely unknown. We report here a role for the sea urchin homolog of the Notch receptor, LvNotch, in mediating the position of this boundary. Overexpression of an activated form of LvNotch throughout the embryo shifts the ectoderm-endoderm boundary more animally along the animal-vegetal axis, whereas expression of a dominant negative form shifts the border vegetally. Mosaic experiments that target activated and dominant negative forms of LvNotch into individual blastomeres of the early embryo, combined with lineage analyses, further reveal that LvNotch signaling mediates the position of this boundary by distinct mechanisms within the animal versus vegetal portions of the embryo. In the animal region of the embryo, LvNotch signaling acts cell autonomously to promote endoderm formation more animally, while in the vegetal portion, LvNotch signaling also promotes the ectoderm-endoderm boundary more animally, but through a cell non-autonomous mechanism. We further demonstrate that vegetal LvNotch signaling controls the localization of nuclear beta-catenin at the ectoderm-endoderm boundary. Based on these results, we propose that LvNotch signaling promotes the position of the ectoderm-endoderm boundary more animally via two mechanisms: (1) a cell-autonomous function within the animal region of the embryo, and (2) a cell non-autonomous role in the vegetal region that regulates a signal(s) mediating ectoderm-endoderm position, possibly through the control of nuclear beta-catenin at the boundary.  相似文献   

11.
12.
13.
The lineage and fate of each blastomere in the 32-cell embryo of the direct-developing sea urchin Heliocidaris erythrogramma have been traced by microinjection of tetramethylrhodamine-dextran. The results reveal substantive evolutionary modifications of the ancestral cell lineage pattern of indirect sea urchin development. Significant among these modifications are changes in the time and order of cell lineage segregation: vegetal ectodermal founder cells consistently arise earlier than during indirect development, while internal founder cells generally segregate later and in a different sequence. Modifications have also arisen in proportions of the embryo fated to become various cell types and larval structures. Ectodermal fates, particularly vestibular ectoderm, comprise a greater proportion of the total cellular volume in H. erythrogramma. Among internal cell types, coelom consumes more and endoderm less of the remaining cellular volume than during indirect sea urchin development. Evolutionary modifications are also apparent in the positional origin of larval cell types and structures in H. erythrogramma. These include an apparent tilt in the axis of prospective cell fate relative to the animal-vegetal axis as defined by cleavage planes. Together these evolutionary changes in the cell lineage of H. erythrogramma produce an accelerated loss of dorsoventral symmetry in cell fate relative to indirect development. The extent and diversity of rearrangements in its cell lineage indicate that the non-feeding larva of H. erythrogramma is a highly modified, novel form rather than a degenerate pluteus larva. These same modifications underscore the evolutionarily flexible relationship between cell lineage, gene expression, and larval morphology in sea urchin development.  相似文献   

14.
The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined.  相似文献   

15.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

16.
The distribution of pigment granules in eggs of three species of sea urchins is described with reference to developmental stage and an egg's animal-vegetal axis of organization. Polarity in unfertilized sea urchin eggs has been a debated subject; present evidence demonstrates that the animal-vegetal axis is established before fertilization. The pigment pattern in some batches of Paracentrotus eggs exhibiting the celebrated “pigment band,” originally described by Theodor Boveri, is revised and is interpreted as a comparatively precocious expression of the underlying egg polarity. “Unbanded” Paracentrotus eggs and eggs of Arbacia lixula and Arbacia punctulata can be induced to exhibit the same pigment pattern by artificial activation. The induced pigment pattern aligns with an axis defined by polar bodies and the jelly canal, which are two external markers of the animal pole which are only rarely seen. It is therefore concluded that all of these eggs possess an animal-vegetal axis before fertilization even though it usually remains unexpressed until later developmental stages. Polarized changes in pigmentation are consistent with the following general mechanism: A change is triggered in the cortex of the vegetal pole; the change is programmed for a time which corresponds to the fourth mitotic division, even though mitosis itself is not involved; activation at fertilization initiates the “clock” in most cases, although in “banded” Paracentrotus eggs the “clock” is apparently started before ovulation; only the vegetal hemisphere's pigment is affected by the change. The nature of the underlying axis which defines animal and vegetal poles is discussed. Aspects of the axis have been tentatively traced back to the primary oocyte stage, but its fundamental nature remains unknown.  相似文献   

17.
The gene CTNNB1 encoding β-catenin is mutated in about 30% of hepatocellular carcinoma, generally often combined with other genetic alterations. In transgenic mice, it has been shown that activation of β-catenin in more than 70% of all hepatocytes causes immediate proliferation leading to hepatomegaly. In this study we established a novel mouse model where β-catenin is activated only in individual, dispersed hepatocytes. Hepatocyte-specific expression of activated point-mutated β-catenin (human β-cateninS33Y) was established using the Cre/loxP system. Expression of several downstream targets of β-catenin signaling such as glutamine synthetase and several cytochrome P450 isoforms was confirmed by immunostaining. Only a minor portion of hepatocytes expressed the β-cateninS33Y transgene, which were mainly positioned as dispersed individual cells within the normal liver parenchyma. The hepatocytes with activated β-catenin did not show increased proliferation and the mice did not develop hepatomegaly. In conclusion, activated β-catenin in single hepatocytes induces a gene expression pattern in hepatocytes which is similar to that of Ctnnb1-mutated mouse liver tumors, but is apparently not sufficient to induce increased cell proliferation. Therefore, onset of proliferation seems to require concomitant activation of β-catenin in clusters of hepatocytes, suggesting a role of cell–cell communication in this process.  相似文献   

18.
19.
The EGFR pathway is critical for cell fate specification throughout the development of several organisms. Here we identified in sea urchin an EGFR-related antigen maternally expressed and showing a dynamic pattern of localization during development. To investigate the role played by the EGFR in Paracentrotus lividus development we blocked its activity by using the EGFR kinase inhibitor AG1478. This treatment produces decrease of EGFR phosphorylation, and embryos with various defects especially in the endomesoderm territory until to obtain an animalized phenotype. These effects are rescued by the addition of TGF-α, an EGFR ligand. The role played by EGFR-like along the animal/vegetal axis was also detected, after AG1478 treatment, by the extended distribution of HE and decreased nuclearization of β-catenin in vegetal cells. Moreover, inhibition of EGFR-like reduced ERK phosphorylation, necessary for cell fate specification in the micromeres and their derivates. Taken together these results indicate that EGFR-like activity is required both for A/V axis formation and endomesoderm differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号