首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu, Zhong-Xin, Robert F. Morton, and Lu-Yuan Lee. Roleof tachykinins in ozone-induced airway hyperresponsiveness to cigarettesmoke in guinea pigs. J. Appl.Physiol. 83(3): 958-965, 1997.Acute exposure to ozone(O3) induces airwayhyperresponsiveness to various inhaled bronchoactive substances.Inhalation of cigarette smoke, a common inhaled irritant in humans, isknown to evoke a transient bronchoconstrictive effect. To examinewhether O3 increases airwayresponsiveness to cigarette smoke, effects of smoke inhalationchallenge on total pulmonary resistance(RL) and dynamic lungcompliance (Cdyn) were compared before and after exposure toO3 (1.5 ppm, 1 h) in anesthetizedguinea pigs. Before O3 exposure,inhalation of two breaths of cigarette smoke (7 ml) at a lowconcentration (33%) induced a mild and reproduciblebronchoconstriction that slowly developed and reached its peak(RL = 67 ± 19%, Cdyn = 29 ± 6%) after a delay of >1 min. After exposure toO3 the same cigarette smokeinhalation challenge evoked an intense bronchoconstriction thatoccurred more rapidly, reaching its peak(RL = 620 ± 224%, Cdyn = 35 ± 7%) within 20 s, and was sustained for >2min. By contrast, sham exposure to room air did not alter thebronchomotor response to cigarette smoke challenge. Pretreatment withCP-99994 and SR-48968, the selective antagonists of neurokinin type 1 and 2 receptors, respectively, completely blocked the enhancedresponses of RL and Cdyn tocigarette smoke challenge induced byO3. These results show thatO3 exposure induces airwayhyperresponsiveness to inhaled cigarette smoke and that the enhancedresponses result primarily from the bronchoconstrictive effect ofendogenous tachykinins.

  相似文献   

2.
Yan, Sheng, Pawel Sliwinski, and Peter T. Macklem.Association of chest wall motion and tidal volume responses during CO2 rebreathing.J. Appl. Physiol. 81(4):1528-1534, 1996.The purpose of this study is to investigate theeffect of chest wall configuration at end expiration on tidal volume(VT) response duringCO2 rebreathing. In a group of 11 healthy male subjects, the changes in end-expiratory andend-inspiratory volume of the rib cage (Vrc,E andVrc,I, respectively) and abdomen (Vab,E and Vab,I, respectively) measured by linearizedmagnetometers were expressed as a function of end-tidalPCO2(PETCO2). The changes inend-expiratory and end-inspiratory volumes of the chest wall(Vcw,E and Vcw,I,respectively) were calculated as the sum of the respectiverib cage and abdominal volumes. The magnetometer coils were placed atthe level of the nipples and 1-2 cm above the umbilicus andcalibrated during quiet breathing against theVT measured from apneumotachograph. TheVrc,E/PETCO2 slope was quite variable among subjects. It was significantly positive (P < 0.05) in fivesubjects, significantly negative in four subjects(P < 0.05), and not different fromzero in the remaining two subjects. TheVab,E/PETCO2slope was significantly negative in all subjects(P < 0.05) with a much smallerintersubject variation, probably suggesting a relatively more uniformrecruitment of abdominal expiratory muscles and a variable recruitmentof rib cage muscles during CO2rebreathing in different subjects. As a group, the meanVrc,E/PETCO2,Vab,E/PETCO2, andVcw,E/PETCO2slopes were 0.010 ± 0.034, 0.030 ± 0.007, and0.020 ± 0.032 l / Torr, respectively;only theVab,E/PETCO2 slope was significantly different from zero. More interestingly, theindividualVT/PETCO2slope was negatively associated with theVrc,E/PETCO2(r = 0.68,P = 0.021) and Vcw,E/PETCO2slopes (r = 0.63,P = 0.037) but was not associated withtheVab,E/PETCO2slope (r = 0.40, P = 0.223). There was no correlation oftheVrc,E/PETCO2 andVcw,E/PETCO2slopes with age, body size, forced expiratory volume in 1 s, orexpiratory time. The groupVab,I/PETCO2 slope (0.004 ± 0.014 l / Torr) was not significantlydifferent from zero despite theVT nearly being tripled at theend of CO2 rebreathing. Inconclusion, the individual VTresponse to CO2, althoughindependent of Vab,E, is a function ofVrc,E to the extent that as theVrc,E/PETCO2slope increases (more positive) among subjects, theVT response toCO2 decreases. These results maybe explained on the basis of the respiratory muscle actions andinteractions on the rib cage.

  相似文献   

3.
The effects ofboth recombinant rat tumor necrosis factor- (TNF-) and ananti-TNF- antibody were studied in isolated buffer-perfused ratlungs subjected to either 45 min of nonventilated[ischemia-reperfusion (I/R)] or air-ventilated(/R) ischemia followed by 90 min of reperfusion and ventilation. In the I/R group, the vascularpermeability, as measured by the filtration coefficient(Kfc),increased three- and fivefold above baseline after 30 and 90 min ofreperfusion, respectively (P < 0.001). Over the same time intervals, theKfc for the/R group increased five- and tenfold above baseline values, respectively (P < 0.001).TNF- measured in the perfusates of both ischemic modelssignificantly increased after 30 min of reperfusion. Recombinant ratTNF- (50,000 U), placed into perfusate after baseline measurements,produced no measurable change in microvascular permeability in controllungs perfused over the same time period (135 min), but I/R injury wassignificantly enhanced in the presence of TNF-. An anti-TNF-antibody (10 mg/rat) injected intraperitoneally into rats 2 h beforethe lung was isolated prevented the microvascular damage in lungsexposed to both I/R and /R (P < 0.001). These results indicatethat TNF- is an essential component at the cascade of events thatcause lung endothelial injury in short-term I/R and/R models of lung ischemia.

  相似文献   

4.
Epidemiological studies have demonstrated that hormonereplacement therapy with estrogen (E2) or E2plus progesterone in postmenopausal women decreases the age-associatedrisk of cardiovascular disease by 30-50%. Treatment of vascularsmooth muscle (VSM) cells with physiological concentrations ofE2 has been shown to inhibit growth factor-stimulated cellproliferation. In this study, we tested the hypothesis thatE2 inhibits the age-associated increase in VSM cellproliferation by inhibiting nuclear factor (NF)-B pathway. Weinvestigated the effects of E2 treatment andadenovirus-mediated estrogen receptor (ER)- gene transfer on cellproliferation and NF-B activation using VSM cells cultured from3-mo-old and 24-mo-old Fischer 344 female rats. Our results demonstratethat VSM cell proliferation was significantly increased(P < 0.05) in aged compared with young adult femalerats. Treatment of VSM cells with physiological concentrations ofE2 inhibited VSM cell proliferation, and this inhibitionwas significantly greater (P < 0.05) in cells from aged female rats compared with young adults. The inhibitory effects ofE2 on cell proliferation in aged female rats weresignificantly potentiated by overexpression of the human ER- geneinto VSM cells. Constitutive and interleukin (IL)-1-stimulatedNF-B activation was significantly greater (P < 0.05) in VSM cells from aged compared with young female rats.E2 treatment of VSM cells from aged female rats inhibitedboth constitutive and IL-1-stimulated NF-B activation. ER-gene transfer into VSM cells from aged female rats further augmentedthe inhibitory effects of E2. In conclusion, our data demonstrate that constitutive and IL-1-stimulated NF-B activation is increased in VSM cells from aged female rats due to loss of E2 and this can be restored back to normal levels by ER-gene transfer and E2 treatment. In addition, increasedNF-B signaling may be responsible for increased incidence ofcardiovascular disease in postmenopausal females.

  相似文献   

5.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

6.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

7.
Grassi, Bruno, Claudio Marconi, Michael Meyer, Michel Rieu,and Paolo Cerretelli. Gas exchange and cardiovascular kinetics with different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82(6): 1952-1962, 1997.Metabolicand cardiovascular adjustments to various submaximal exercises wereevaluated in 82 heart transplant recipients (HTR) and in 35 controlsubjects (C). HTR were tested 21.5 ± 25.3 (SD) mo (range1.0-137.1 mo) posttransplantation. Three protocols were used:protocol A consisted of 5 min of rectangular 50-W load repeatedtwice, 5 min apart [5 min rest, 5 min 50 W (Ex 1), 5 minrecovery, 5 min 50 W (Ex 2)]; protocol B consistedof 5 min of rectangular load at 25, 50, or 75 W; protocol Cconsisted of 15 min of rectangular load at 25 W. Breath-by-breathpulmonary ventilation (E),O2 uptake (O2),and CO2 output(CO2) were determined.During protocol A, beat-by-beat cardiacoutput () was estimated by impedance cardiography. The half times (t1/2) of the on- andoff-kinetics of the variables were calculated. In all protocols,t1/2 values forO2 on-,E on-, andCO2 on-kinetics were higher(i.e., the kinetics were slower) in HTR than in C, independently ofworkload and of the time posttransplantation. Also,t1/2 on- was higher in HTRthan in C. In protocol A, no significant difference of t1/2 O2on- was observed in HTR between Ex 1 (48 ± 9 s) and Ex2 (46 ± 8 s), whereas t1/2 on- was higher during Ex 1 (55 ± 24 s)than during Ex 2 (47 ± 15 s). In all protocols and for all variables, the t1/2 off-values were higher in HTRthan in C. In protocol C, no differences of steady-stateE,O2, andCO2 were observed in bothgroups between 5, 10, and 15 min of exercise. We conclude that1) in HTR, a "priming" exercise, while effective inspeeding up the adjustment of convective O2 flow to muscle fibers during a second on-transition, did not affect theO2 on-kinetics, suggestingthat the slower O2 on- inHTR was attributable to peripheral (muscular) factors; 2) thedissociation between on- andO2 on-kinetics in HTRindicates that an inertia of muscle metabolic machinery is the mainfactor dictating theO2 on-kinetics; and 3) theO2 off-kinetics was slowerin HTR than in C, indicating a greater alactic O2 deficitin HTR and, therefore, a sluggish muscleO2 adjustment.

  相似文献   

8.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

9.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

10.
Chiang, Chi-Huei, Kang Hsu, Horng-Chin Yan, Horng-Jyh Harn,and Deh-Ming Chang.PGE1, dexamethasone,U-74389G, or Bt2-cAMP as anadditive to promote protection by UW solution in I/R injury. J. Appl. Physiol. 83(2): 583-590, 1997.A method to reduce ischemia-reperfusion (I/R) injury can be animportant criterion to improve the preservation solution. AlthoughUniversity of Wisconsin solution (UW) works as a lung preservationsolution, its attenuation effect on I/R injury has not beeninvestigated. We attempted to determine whether, by adding variousprotective agents, modified UW solutions will enhance the I/Rattenuation by UW. We examined the I/R injury in an isolated rat lungmodel. Various solutions, e.g., physiological salt solution (PSS), UW,and modified UW solutions containing various protective agents such asprostaglandin E1, dexamethasone, U-74389G, or dibutyryl adenosine 3,5-cyclic monophosphatewere perfused individually to evaluate the I/R injury. Isolated rat lung experiments, with ischemia for 45 min, then reperfusion for 60 min, were conducted in a closed circulating system.Hemodynamic changes, lung weight gain (LWG), capillary filtrationcoefficient (Kfc), proteincontent of lavage fluid, concentration of cytokines, and lunghistopathology were analyzed. Results showed that the acute I/R lunginjury with immediate permeability pulmonary edema was associated withan increase in tumor necrosis factor- (TNF-) production. A significant correlation existed betweenTNF- and Kfc(r = 0.8, P < 0.0001) and TNF- and LWG(r = 0.9, P < 0.0001), indicatingthat TNF- is an important cytokine modulating early I/R injury.Significantly lower levels ofKfc, LWG,TNF-, and protein concentration of lung lavage(P < 0.05) were found in theUW-perfused group than in the control group perfused with PSS. ModifiedUW promoted the protective effect of UW to further decreaseKfc, LWG, andTNF- (P < 0.05).Histopathological observations also substantiated this evidence. In theUW+U-74389G group, bronchial alveolar lavage fluid contained lowestprotein concentration. We conclude that the UW solution attenuates I/Rinjury of rat lung and that the modified UW solutions further enhancethe effect of UW in reducing I/R injury. Among modified solutions,UW+U-74389G is the best. Further investigation of the improved effectsof the modified UW solutions would be beneficial in lungtransplantation.

  相似文献   

11.
Li, M. H., J. Hildebrandt, and M. P. Hlastala.Quantitative analysis of transpleural flux in the isolated lung.J. Appl. Physiol. 82(2): 545-551, 1997.In this study, the loss of inert gas through the pleura of anisolated ventilated and perfused rabbit lung was assessed theoreticallyand experimentally. A mathematical model was used to represent an idealhomogeneous lung placed within a box with gas flow(box) surrounding the lung. Thealveoli are assumed to be ventilated with room air(A) andperfused at constant flow () containinginert gases (x) with various perfusate-air partition coefficients(p,x).The ratio of transpleural flux of gas(plx)to its total delivery to the lung via pulmonary artery( ),representing fractional losses across the pleura, can be shown todepend on four dimensionless ratios:1)p,x,2) the ratio of alveolar ventilation to perfusion(A/), 3) the ratioof the pleural diffusing capacity(Dplx) to the conductance ofthe alveolar ventilation (Dplx /Ag,where g is the capacitancecoefficient of gas), and 4) theratio of extrapleural (box) ventilation to alveolar ventilation(box/A).Experiments were performed in isolated perfused and ventilated rabbitlungs. The perfusate was a buffer solution containing six dissolvedinert gases covering the entire 105-fold range ofp,x usedin the multiple inert gas elimination technique. Steady-state inert gasconcentrations were measured in the pulmonary arterial perfusate,pulmonary venous effluent, exhaled gas, and box effluent gas. Theexperimental data could be described satisfactorily by thesingle-compartment model. It is concluded that a simple theoreticalmodel is a useful tool for predicting transpleural flux from isolatedlung preparations, with known ventilation and perfusion, for inertgases within a wide range of .

  相似文献   

12.
This study aimedto determine the role of protein kinase C (PKC) in signal transductionmechanisms underlying ventilatory regulation in the nucleus tractussolitarii (NTS). Microinjection of phorbol 12-myristate 13-acetate intothe commissural NTS of nine chronically instrumented, unrestrained ratselicited significant cardiorespiratory enhancements that lasted for atleast 4 h, whereas administration of vehicle(n = 15) or the inactive phorbol ester 4-phorbol 12,13-didecanoate (n = 7)did not elicit minute ventilation (E)changes. Peak hypoxic Eresponses (10% O2-balanceN2) were measured in 19 additional animals after NTS microinjection of bisindolylmaleimide(BIM) I, a selective PKC inhibitor (n = 12), BIM V (inactive analog; n = 7),or vehicle (Con; n = 19). In Con,E increased from 139 ± 9 to 285 ± 26 ml/min in room air and hypoxia, respectively, and similarresponses occurred after BIM V. BIM I did not affect room airE but markedly attenuated hypoxia-induced E increases (128 ± 12 to 167 ± 18 ml/min; P < 0.02 vs. Con and BIM V). When BIM I was microinjected into the cerebellum(n = 4), cortex(n = 4), or spinal cord(n = 4),E responses were similar to Con.Western blots of subcellular fractions of dorsocaudal brain stemlysates revealed translocation of PKC, , , , , and  isoenzymes during acute hypoxia, and enhanced overall PKC activity wasconfirmed in the particulate fraction of dorsocaudal brain stem lysatesharvested after acute hypoxia. These studies suggest that, in the adultrat, PKC activation in the NTS mediates essential components of theacute hypoxic ventilatory response.

  相似文献   

13.
Barstow, Thomas J., Andrew M. Jones, Paul H. Nguyen, andRichard Casaburi. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.J. Appl. Physiol. 81(4):1642-1650, 1996.We tested the hypothesis that the amplitude ofthe additional slow component ofO2 uptake(O2) during heavy exerciseis correlated with the percentage of type II (fast-twitch) fibers inthe contracting muscles. Ten subjects performed transitions to a workrate calculated to require aO2 equal to 50% betweenthe estimated lactate (Lac) threshold and maximalO2 (50%).Nine subjects consented to a muscle biopsy of the vastus lateralis. Toenhance the influence of differences in fiber type among subjects,transitions were made while subjects were pedaling at 45, 60, 75, and90 rpm in different trials. Baseline O2 was designed to besimilar at the different pedal rates by adjusting baseline work ratewhile the absolute increase in work rate above the baseline was thesame. The O2 response after the onset of exercise was described by a three-exponential model. Therelative magnitude of the slow component at the end of 8-min exercisewas significantly negatively correlated with %type I fibers at everypedal rate (r = 0.64 to 0.83, P < 0.05-0.01). Furthermore,the gain of the fast component forO2 (asml · min1 · W1)was positively correlated with the %type I fibers across pedal rates(r = 0.69-0.83). Increase inpedal rate was associated with decreased relative stress of theexercise but did not affect the relationships between%fiber type and O2parameters. The relative contribution of the slow component was alsosignificantly negatively correlated with maximalO2(r = 0.65), whereas the gainfor the fast component was positively associated(r = 0.68-0.71 across rpm). Theamplitude of the slow component was significantly correlated with netend-exercise Lac at all four pedal rates(r = 0.64-0.84), but Lac was notcorrelated with %type I (P > 0.05).We conclude that fiber type distribution significantly affects both thefast and slow components ofO2 during heavy exerciseand that fiber type and fitness may have both codependent andindependent influences on the metabolic and gas-exchange responses toheavy exercise.

  相似文献   

14.
Tyler, Catherine M., Lorraine C. Golland, David L. Evans,David R. Hodgson, and Reuben J. Rose. Changes in maximum oxygenuptake during prolonged training, overtraining, and detraining inhorses. J. Appl. Physiol. 81(5):2244-2249, 1996.Thirteen standardbred horses were trained asfollows: phase 1 (endurance training, 7 wk),phase 2 (high-intensity training, 9 wk),phase 3 (overload training, 18 wk), andphase 4 (detraining, 12 wk). Inphase 3, the horses were divided intotwo groups: overload training (OLT) and control (C). The OLT groupexercised at greater intensities, frequencies, and durations than groupC. Overtraining occurred after 31 wk of training and was defined as asignificant decrease in treadmill run time in response to astandardized exercise test. In the OLT group, there was a significantdecrease in body weight (P < 0.05).From pretraining values of 117 ± 2 (SE)ml · kg1 · min1,maximal O2 uptake(O2 max) increased by15% at the end of phase 1, and when signs of overtraining werefirst seen in the OLT group,O2 max was 29%higher (151 ± 2 ml · kg1 · min1in both C and OLT groups) than pretraining values. There was nosignificant reduction inO2 max until after 6 wk detraining whenO2 max was 137 ± 2 ml · kg1 · min1.By 12 wk detraining, meanO2 max was134 ± 2 ml · kg1 · min1,still 15% above pretraining values. When overtraining developed, O2 max was notdifferent between C and OLT groups, but maximal values forCO2 production (147 vs. 159 ml · kg1 · min1)and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLTgroup. Overtraining was not associated with a decrease inO2 max and, afterprolonged training, decreases inO2 max occurredslowly during detraining.

  相似文献   

15.
Oxygen transport in conscious newborn dogs during hypoxic hypometabolism   总被引:1,自引:0,他引:1  
We questioned whether the decrease inO2 consumption(O2) during hypoxia innewborns is a regulated response or reflects a limitation inO2 availability. Experiments wereconducted on previously instrumented conscious newborn dogs.O2 was measured at a warmambient temperature (30°C, n = 7)or in the cold (20°C, n = 6),while the animals breathed air or were sequentially exposed to 15 minof fractional inspired O2(FIO2): 21, 18, 15, 12, 10, 8, and 6%. In normoxia,O2 averaged 15 ± 1 (SE)and 25 ± 1 ml · kg1 · min1in warm and cold conditions, respectively. In the warmcondition, hypometabolism (i.e., hypoxicO2 < normoxicO2) occurred at FIO2 10%, whereas in thecold condition, hypometabolism occurred atFIO2 12%. The sameresults were obtained in a separate group(n = 14) of noninstrumented puppies.For all levels of FIO2 withhypometabolism, the relationships between measures ofO2 availability (arterialO2 saturation or content, venousPO2 or saturation,x-axis) vs.O2(y-axis) had lower slopes in warm than in coldconditions. Hence, O2 during hypometabolism in the warm condition was not the maximal attainable for the level of oxygenation. The results do not support thepossibility that the hypoxic drop inO2 in the newborn reflects a limitation in O2availability. The results are compatible with the ideathat the phenomenon is one of "regulated conformism" tohypoxia.

  相似文献   

16.
The mechanism(s)limiting muscle O2 uptake(O2) kinetics wasinvestigated in isolated canine gastrocnemius muscles(n = 7) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% of peakO2). Two conditions weremainly compared: 1) spontaneousadjustment of blood flow () [control, spontaneous (C Spont)]; and2) pump-perfused, adjusted ~15 s before contractions at aconstant level corresponding to the steady-state value duringcontractions in C Spont [faster adjustment ofO2 delivery (FastO2 Delivery)]. During FastO2 Delivery, 1-2 ml/min of102 M adenosine wereinfused intra-arterially to prevent inordinate pressure increases withthe elevated . The purpose of the study was todetermine whether a faster adjustment ofO2 delivery would affectO2 kinetics. was measured continuously; arterial(CaO2) and popliteal venous(CvO2)O2 contents were determined atrest and at 5- to 7-s intervals during contractions;O2 delivery was calculated as · CaO2,and O2 was calculated as · arteriovenous O2 content difference. Times toreach 63% of the difference between baseline and steady-stateO2 during contractions were23.8 ± 2.0 (SE) s in C Spont and 21.8 ± 0.9 s in FastO2 Delivery (not significant). Inthe present experimental model, elimination of any delay inO2 delivery during therest-to-contraction transition did not affect muscleO2 kinetics, which suggeststhat this kinetics was mainly set by an intrinsic inertia of oxidativemetabolism.

  相似文献   

17.
Assisted ventilation with pressure support (PSV)or proportional assist (PAV) ventilation has the potential to produceperiodic breathing (PB) during sleep. We hypothesized that PB willdevelop when PSV level exceeds the product of spontaneous tidal volume (VT) and elastance(VTsp · E)but that the actual level at which PB will develop[PSV(PB)] will be influenced by thePCO2 (difference between eupneicPCO2 andCO2 apneic threshold) and by RR[response of respiratory rate (RR) to PSV]. We also wishedto determine the PAV level at which PB develops to assess inherentventilatory stability in normal subjects. Twelve normal subjectsunderwent polysomnography while connected to a PSV/PAV ventilatorprototype. Level of assist with either mode was increased in smallsteps (2-5 min each) until PB developed or the subject awakened.End-tidal PCO2,VT, RR, and airway pressure (Paw) were continuously monitored, and the pressure generated byrespiratory muscle (Pmus) was calculated. The pressure amplification factor (PAF) at the highest PAV level was calculated from[(Paw + Pmus)/Pmus], where Paw is peak Paw  continuous positive airway pressure. PB with central apneas developedin 11 of 12 subjects on PSV. PCO2ranged from 1.5 to 5.8 Torr. Changes in RR with PSV were small andbidirectional (+1.1 to 3.5min1). With use ofstepwise regression, PSV(PB) was significantly correlated withVTsp(P = 0.001), E(P = 0.00009),PCO2 (P = 0.007), and RR(P = 0.006). The final regressionmodel was as follows: PSV(PB) = 11.1 VTsp + 0.3E  0.4 PCO2  0.34 RR  3.4 (r = 0.98). PBdeveloped in five subjects on PAV at amplification factors of1.5-3.4. It failed to occur in seven subjects, despite PAF of upto 7.6. We conclude that 1) aPCO2 apneic threshold exists duringsleep at 1.5-5.8 Torr below eupneicPCO2,2) the development of PB during PSVis entirely predictable during sleep, and3) the inherent susceptibility to PBvaries considerably among normal subjects.

  相似文献   

18.
We have recently demonstrated that changes inthe work of breathing during maximal exercise affect leg blood flow andleg vascular conductance (C. A. Harms, M. A. Babcock, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, and J. A. Dempsey. J. Appl. Physiol. 82: 1573-1583,1997). Our present study examined the effects of changesin the work of breathing on cardiac output (CO) during maximalexercise. Eight male cyclists [maximalO2 consumption(O2 max):62 ± 5 ml · kg1 · min1]performed repeated 2.5-min bouts of cycle exercise atO2 max. Inspiratorymuscle work was either 1) at controllevels [inspiratory esophageal pressure (Pes): 27.8 ± 0.6 cmH2O],2) reduced via a proportional-assistventilator (Pes: 16.3 ± 0.5 cmH2O), or 3) increased via resistive loads(Pes: 35.6 ± 0.8 cmH2O).O2 contents measured in arterialand mixed venous blood were used to calculate CO via the direct Fickmethod. Stroke volume, CO, and pulmonaryO2 consumption(O2) were not different(P > 0.05) between control andloaded trials atO2 max but were lower(8, 9, and 7%, respectively) than control withinspiratory muscle unloading atO2 max. Thearterial-mixed venous O2difference was unchanged with unloading or loading. We combined thesefindings with our recent study to show that the respiratory muscle work normally expended during maximal exercise has two significant effectson the cardiovascular system: 1) upto 14-16% of the CO is directed to the respiratory muscles; and2) local reflex vasoconstriction significantly compromises blood flow to leg locomotor muscles.

  相似文献   

19.
This study examined the scaling relationships ofnet O2 uptake [O2(net) = O2  restingO2] to body mass(MB) andcombined mass (MC = MB + bicycle)during uphill treadmill bicycling. It was hypothesized thatO2(net)(l/min) would scale proportionally withMC [i.e.,O2(net)  M1.0C] and less than proportionally withMB [i.e.,O2(net)  MB].Twenty-five competitive cyclists [73.9 ± 8.8 and 85.0 ± 9.0 (SD) kg forMB andMC,respectively] rode their bicycles on a treadmill at 3.46 m/s andgrades of 1.7, 3.5, 5.2, and 7.0% whileO2 was measured. Multiplelog-linear regression procedures were applied to the pooledO2(net)data to determine the exponents forMC andMB afterstatistically controlling for differences in treadmill grade anddynamic friction. The regression models were highly significant (R2 = 0.95, P < 0.001). Exponents forMC (0.99, 95%confidence interval = 0.80-1.18) andMB (0.89, 95%confidence interval = 0.72-1.07) did not differ significantly fromeach other or 1.0. It was concluded that the 0.99 MC exponent wasdue to gravitational resistance, whereas theMB exponent was<1.0 because the bicycles were relatively lighter for heaviercyclists.

  相似文献   

20.
Kotanidou, Anastasia, Augustine M. K. Choi, Richard A. Winchurch, Leo Otterbein, and Henry E. Fessler. Urethan anesthesia protects rats against lethal endotoxemia and reduces TNF- release. J. Appl. Physiol. 81(5):2304-2311, 1996.Urethan is a commonly used animalanesthetic for nonrecovery laboratory surgery. However, urethan hasdiverse biological effects that may complicate the interpretation ofexperimental findings. This study examined the effect of urethan on theresponse to an intravenous bolus of lipopolysaccharide (LPS; 30 mg/kg)in rats. In instrumented rats, urethan (1.2 gm/kg ip) completelyprevented the fall in arterial pressure immediately after LPSadministration but did not prevent late cardiovascular collapse. Inuninstrumented rats, urethan also attenuated indexes of organ injurymeasured 4 h after LPS administration, including mural bowelhemorrhage, hemoconcentration, hypoglycemia, metabolic acidosis, andlung myeloperoxidase activity, a measure of neutrophil sequestration.The peak increase in tumor necrosis factor- (TNF-) 90 min afterLPS administration was reduced 88% by urethan (2,060 ± 316 vs.16,934 ± 847 pg/ml; P < 0.001).In uninstrumented animals, urethan at 1.2 gm/kg reduced the 90%mortality rate of a lethal dose of LPS to 0-10% whengiven up to 24 h before LPS administration but did not reduce mortalitywhen given 2 h after LPS. Urethan neither directly bound LPS byLimulus assay nor inhibitedLPS-stimulated TNF- mRNA expression in cultured mouse peritonealmacrophages, but TNF- mRNA expression was suppressed by serum from aurethan-treated rat. Moreover, rauwolscine, which shares2-adrenoceptor-blocking activity with urethan, also prevented death from a subsequent 90% lethal dose LPS bolus. We conclude that urethan or its metabolites protect against LPS, in part, by reducing TNF- release andspeculate that this may be mediated by2-adrenoceptors. These actionsof urethan make it an undesirable anesthetic agent for in vivo studies of sepsis or LPS.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号