首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell Stem Cell》2020,26(1):108-122.e10
  1. Download : Download high-res image (288KB)
  2. Download : Download full-size image
  相似文献   

2.

Background

KaiC, a central clock protein in cyanobacteria, undergoes circadian oscillations between hypophosphorylated and hyperphosphorylated forms in vivo and in vitro. Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements.

Methodology and Principal Findings

Mutational approaches and biochemical analyses of KaiC support a key role for T426 in control of the KaiC phosphorylation status in vivo and in vitro and demonstrates that alternative amino acids at residue 426 dramatically affect KaiC''s properties in vivo and in vitro, especially genetic dominance/recessive relationships, KaiC dephosphorylation, and the formation of complexes of KaiC with KaiA and KaiB. These mutations alter key circadian properties, including period, amplitude, robustness, and temperature compensation. Crystallographic analyses indicate that the T426 site is phosphorylatible under some conditions, and in vitro phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked.

Conclusions and Significance

T426 is a crucial site that regulates KaiC phosphorylation status in vivo and in vitro and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites–including T426–within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria.  相似文献   

3.
The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the circadian rhythms of behavioral and physiological activity to the external 24 h light-dark cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regulates the ~24h rhythm of activity. Experimental and theoretical studies usually take the light-dark cycle as a main external influence, and often ignore light pollution as an external influence. However, in modern society, the light pollution such as induced by electrical lighting influences the circadian clock. In the present study, we examined the effect of external noise (light pollution) on the collective behavior of coupled circadian oscillators under constant darkness using a Goodwin model. We found that the external noise plays distinct roles in the network behavior of neurons for weak or strong coupling between the neurons. In the case of strong coupling, the noise reduces the synchronization and the period of the SCN network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in the SCN network which is absent in noise-free condition. In addition, the noise increases the synchronization and decreases the period of the SCN network. Our findings may shed new light on the impact of the external noise on the collective behavior of SCN neurons.  相似文献   

4.
《Endocrine practice》2023,29(4):235-239
ObjectiveVitamin D deficiency impairs female fertility and the success of in vitro fertilization (IVF). The recommended serum 25-hydroxyvitamin D (25(OH)D) level in IVF-conceived pregnancies is still debated. We aimed to explore the relationship of the preconception serum 25(OH)D level with pregnancy outcome following IVF treatment. We also explored the utility of the currently recommended serum 25(OH)D cutoff of ≥50 nmol/L for women undergoing IVF therapy.MethodsRetrospective cohort of women who had undergone IVF therapy. Of the women who started IVF therapy (n = 354), 218 completed the study. They were divided into 2 groups: (1) women who achieved a successful pregnancy (pregnant group, n = 160) and (2) those who did not achieve a successful pregnancy (nonpregnant group, n = 58). Preconception serum samples were analyzed for reproductive hormones, fasting glucose, insulin, and 25(OH)D levels.ResultsOverall, the median (interquartile range) age, body mass index, and hemoglobin A1c level were 32 (6) years, 25.7 (7.4) kg/m2, and 5.2% (0.6%), respectively. The 25(OH)D level was significantly higher at preconception in the pregnant group (56.4 [21.4] vs 47.9 [29.16] for nonpregnant, P = .001). The preconception 25(OH)D level was a significant predictor of IVF outcome (B = 0.04; 95% CI, 1.01-1.06; P = .001), with greater IVF success associated with a serum 25(OH)D level of ≥50 nmol/L (odds ratio, 0.46; P = .01).ConclusionPreconception 25(OH)D sufficiency (≥50 nmol/L) is associated with successful pregnancy outcome following IVF therapy.  相似文献   

5.
6.
7.
8.
9.
《Developmental cell》2014,28(4):394-408
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
Highlights? GA is metabolized by CYP2E1 to produce a metabolite proteasome inhibitor ? Proteasome inhibition is required for GA’s cytotoxicity and anticancer activity ? GA is a more tissue-specific proteasome inhibitor than bortezomib/velcade ? GA is nontoxic to peripheral white blood cells compared to bortezomib  相似文献   

12.
13.
14.

Background

The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS→pTS→pTpS→TpS→TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC.

Methodology and Principal Findings

The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP γ-phosphate. T432 is phosphorylated first because it lies consistently closer to Pγ. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation.

Conclusions and Significance

We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.  相似文献   

15.
《Cell Stem Cell》2020,26(5):782-792.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.
19.
《Current biology : CB》2020,30(22):4534-4540.e7
  1. Download : Download high-res image (275KB)
  2. Download : Download full-size image
  相似文献   

20.
The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号