首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bemporad D  Sands ZA  Wee CL  Grottesi A  Sansom MS 《Biochemistry》2006,45(39):11844-11855
VSTx1 is a tarantula venom toxin which binds to the archaebacterial voltage-gated potassium channel KvAP. VSTx1 is thought to access the voltage sensor domain of the channel via the lipid bilayer phase. In order to understand its mode of action and implications for the mechanism of channel activation, it is important to characterize the interactions of VSTx1 with lipid bilayers. Molecular dynamics (MD) simulations (for a total simulation time in excess of 0.2 micros) have been used to explore VSTx1 localization and interactions with zwitterionic (POPC) and with anionic (POPE/POPG) lipid bilayers. In particular, three series of MD simulations have been used to explore the net drift of VSTx1 relative to the center of a bilayer, starting from different locations of the toxin. The preferred location of the toxin is at the membrane/water interface. Although there are differences between POPC and POPE/POPG bilayers, in both cases the toxin forms favorable interactions at the interface, maximizing H-bonding to lipid headgroups and to water molecules while retaining interactions with the hydrophobic core of the bilayer. A 30 ns unrestrained simulation reveals dynamic partitioning of VSTx1 into the interface of a POPC bilayer. The preferential location of VSTx1 at the interface is discussed in the context of Kv channel gating models and provides support for a mode of action in which the toxin interacts with the Kv voltage sensor "paddle" formed by the S3 and S4 helices.  相似文献   

2.
A number of membrane proteins act via binding at the water/lipid bilayer interface. An important example of such proteins is provided by the gating-modifier toxins that act on voltage-gated potassium (Kv) channels. They are thought to partition to the headgroup region of lipid bilayers, and so provide a good system for probing the nature of interactions of a protein with the water/bilayer interface. We used coarse-grained molecular dynamics simulations to compute the one-dimensional potential of mean force (i.e., free energy) profile that governs the interaction between a Kv channel gating-modifier toxin (VSTx1) and model phospholipid bilayers. The reaction coordinate sampled corresponds to the position of the toxin along the bilayer normal. The course-grained representation of the protein and lipids enabled us to explore extended time periods, revealing aspects of toxin/bilayer dynamics and energetics that would be difficult to observe on the timescales currently afforded by atomistic molecular dynamics simulations. In particular, we show for this model system that the bilayer deforms as it interacts with the toxin, and that such deformations perturb the free energy profile. Bilayer deformation therefore adds an additional layer of complexity to be addressed in investigations of membrane/protein systems. In particular, one should allow for local deformations that may arise due to the spatial array of charged and hydrophobic elements of an interfacially located membrane protein.  相似文献   

3.
Jung HJ  Lee JY  Kim SH  Eu YJ  Shin SY  Milescu M  Swartz KJ  Kim JI 《Biochemistry》2005,44(16):6015-6023
VSTx1 is a voltage sensor toxin from the spider Grammostola spatulata that inhibits KvAP, an archeabacterial voltage-activated K(+) channel whose X-ray structure has been reported. Although the receptor for VSTx1 and the mechanism of inhibition are unknown, the sequence of the toxin is related to hanatoxin (HaTx) and SGTx, two toxins that inhibit eukaryotic voltage-activated K(+) channels by binding to voltage sensors. VSTx1 has been recently shown to interact equally well with lipid membranes that contain zwitterionic or acidic phospholipids, and it has been proposed that the toxin receptor is located within a region of the channel that is submerged in the membrane. As a first step toward understanding the inhibitory mechanism of VSTx1, we determined the three-dimensional solution structure of the toxin using NMR. Although the structure of VSTx1 is similar to HaTx and SGTx in terms of molecular fold and amphipathic character, the detailed positions of hydrophobic and surrounding charged residues in VSTx1 are very different than what is seen in the other toxins. The amphipathic character of VSTx1, notably the close apposition of basic and hydrophobic residues on one face of the toxin, raises the possibility that the toxin interacts with interfacial regions of the membrane. We reinvestigated the partitioning of VSTx1 into lipid membranes and find that VSTx1 partitioning requires negatively charged phospholipids. Intrinsic tryptophan fluorescence and acrylamide quenching experiments suggest that tryptophan residues on the hydrophobic surface of VSTx1 have a diminished exposure to water when the toxin interacts with membranes. The present results suggest that if membrane partitioning is involved in the mechanism by which VSTx1 inhibits voltage-activated K(+) channels, then binding of the toxin to the channel would likely occur at the interface between the polar headgroups and the hydrophobic phase of the membrane.  相似文献   

4.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

5.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

6.
Zarrabi M  Naderi-Manesh H 《Proteins》2008,71(3):1441-1449
Kappa-Hefutoxin1 is a K(+) channel-blocking toxin from the scorpion Heterometrus fluvipes. It is a 22-residue protein that adapts a novel fold of two parallel helices linked by two disulfide bridges without beta-sheets. Recognition of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels, Kv1.1, Kv1.2, and Kv1.3, was studied by 3D-Dock software package. All structures of kappa-Hefutoxin1 were considered during the simulations, which indicated that even small changes in the structure of kappa-Hefutoxin1 considerably affected both the recognition and the binding between kappa-Hefutoxin1 and the Kv1 channels. kappa-Hefutoxin1 is located around the extracellular part of the Kv1 channels, making contacts with its helices. Lys 19, Tyr 5, Arg 6, Trp 9, or Arg 10 in the toxin and residues Asp 402, His 404, Thr 407,Gly 401, and Asp 386 in each subunit of the Kv potassium channel are the key residues for the toxin-channel recognition. Moreover, the simulation result demonstrates that the hydrophobic interactions are important in interaction of negatively charged toxins with potassium channels. The results of our docking/molecular dynamics simulations indicate that our 3D model structure of the kappa-Hefutoxin1-complex is both reasonable and acceptable and could be helpful for smarter drug design and the blocking agents of Kv1 channels.  相似文献   

7.
Voltage-sensor (VS) domains cause the pore of voltage-gated ion channels to open and close in response to changes in transmembrane potential. Recent experimental studies suggest that VS domains are independent structural units. This independence is revealed dramatically by a voltage-dependent proton-selective channel (Hv), which has a sequence homologous to the VS domains of voltage-gated potassium channels (Kv). Here we show by means of molecular dynamics simulations that the isolated open-state VS domain of the KvAP channel in a lipid membrane has a configuration consistent with a water channel, which we propose as a common feature underlying the conductance of protons, and perhaps other cations, through VS domains.  相似文献   

8.
We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels.  相似文献   

9.
The carboxyl terminus of the S3 segment (S3C) in voltage-gated potassium channels was suggested to be the binding site of gating modifier toxins like hanatoxin. It has also been proposed to have a helical secondary structural arrangement. The currently available structures in high resolution for such channel molecules are restricted to regions illustrating the pore function. Therefore no further direct experimental data to elucidate the detailed mechanism for such toxin binding can be derived. In order to examine the putative three-dimensional structure of S3C and to analyze the residues required for hanatoxin binding, molecular simulation and docking were performed, based on the solution structure of hanatoxin and the structural information from mutational scanning data for the S3C fragment in Kv2.1. Our results indicate that hydrophobic and electrostatic interactions are both utilized to stabilize the toxin binding. Precise docking residues and the appropriate orientation for binding regarding amphipathic environments are also described. Compared with the functional data proposed by previous studies, the helical structural arrangement for the C-terminus of the S3 segment in voltage-gated potassium channels can therefore be further emphasized and analyzed. The possible location/orientation for toxin binding with respect to membrane distribution around the S3C segment is also discussed in this paper.  相似文献   

10.
Fu W  Cui M  Briggs JM  Huang X  Xiong B  Zhang Y  Luo X  Shen J  Ji R  Jiang H  Chen K 《Biophysical journal》2002,83(5):2370-2385
The recognition of the scorpion toxin maurotoxin (MTX) by the voltage-gated potassium (Kv1) channels, Kv1.1, Kv1.2, and Kv1.3, has been studied by means of Brownian dynamics (BD) simulations. All of the 35 available structures of MTX in the Protein Data Bank (http://www.rcsb.org/pdb) determined by nuclear magnetic resonance were considered during the simulations, which indicated that the conformation of MTX significantly affected both the recognition and the binding between MTX and the Kv1 channels. Comparing the top five highest-frequency structures of MTX binding to the Kv1 channels, we found that the Kv1.2 channel, with the highest docking frequencies and the lowest electrostatic interaction energies, was the most favorable for MTX binding, whereas Kv1.1 was intermediate, and Kv1.3 was the least favorable one. Among the 35 structures of MTX, the 10th structure docked into the binding site of the Kv1.2 channel with the highest probability and the most favorable electrostatic interactions. From the MTX-Kv1.2 binding model, we identified the critical residues for the recognition of these two proteins through triplet contact analyses. MTX locates around the extracellular mouth of the Kv1 channels, making contacts with its beta-sheets. Lys23, a conserved amino acid in the scorpion toxins, protrudes into the pore of the Kv1.2 channel and forms two hydrogen bonds with the conserved residues Gly401(D) and Tyr400(C) and one hydrophobic contact with Gly401(C) of the Kv1.2 channel. The critical triplet contacts for recognition between MTX and the Kv1.2 channel are Lys23(MTX)-Asp402(C)(Kv1), Lys27(MTX)-Asp378(D)(Kv1), and Lys30(MTX)-Asp402(A)(Kv1). In addition, six hydrogen-bonding interactions are formed between residues Lys23, Lys27, Lys30, and Tyr32 of MTX and residues Gly401, Tyr400, Asp402, Asp378, and Thr406 of Kv1.2. Many of them are formed by side chains of residues of MTX and backbone atoms of the Kv1.2 channel. Five hydrophobic contacts exist between residues Pro20, Lys23, Lys30 and Tyr32 of MTX and residues Asp402, Val404, Gly401, and Arg377 of the Kv1.2 channel. The simulation results are in agreement with the previous molecular biology experiments and explain the binding phenomena between MTX and Kv1 channels at the molecular level. The consistency between the results of the BD simulations and the experimental data indicated that our three-dimensional model of the MTX-Kv1.2 channel complex is reasonable and can be used in additional biological studies, such as rational design of novel therapeutic agents blocking the voltage-gated channels and in mutagenesis studies in both the toxins and the Kv1 channels. In particular, both the BD simulations and the molecular mechanics refinements indicate that residue Asp378 of the Kv1.2 channel is critical for its recognition and binding functionality toward MTX. This phenomenon has not been appreciated in the previous mutagenesis experiments, indicating this might be a new clue for additional functional study of Kv1 channels.  相似文献   

11.
Voltage-dependent K+ (Kv) channels form the basis of the excitability of nerves and muscles. KvAP is a well-characterized archeal Kv channel that has been widely used to investigate many aspects of Kv channel biochemistry, biophysics, and structure. In this study, a minimal kinetic gating model for KvAP function in two different phospholipid decane bilayers is developed. In most aspects, KvAP gating is similar to the well-studied eukaryotic Shaker Kv channel: conformational changes occur within four voltage sensors, followed by pore opening. Unlike the Shaker Kv channel, KvAP possesses an inactivated state that is accessible from the pre-open state of the channel. Changing the lipid composition of the membrane influences multiple gating transitions in the model, but, most dramatically, the rate of recovery from inactivation. Inhibition by the voltage sensor toxin VSTx1 is most easily explained if VSTx1 binds only to the depolarized conformation of the voltage sensor. By delaying the voltage sensor's return to the hyperpolarized conformation, VSTx1 favors the inactivated state of KvAP.  相似文献   

12.
Chen R  Chung SH 《Biochemistry》2012,51(9):1976-1982
A polypeptide toxin extracted from scorpion venom, OSK1, is modified such that its potency is drastically enhanced in blocking one class of voltage-gated potassium channels, Kv1.3, which is a pharmacological target for immunosuppressive therapy. The bound complex of Kv1.3 and OSK1 reveals that one lysine residue of the toxin is in the proximity of another lysine residue on the external vestibule of the channel, just outside of the selectivity filter. This unfavorable electrostatic interaction is eliminated by interchanging the positions of two amino acids in the toxin. The potentials of mean force of the wild-type and mutant OSK1 bound to Kv1.1-Kv1.3 channels are constructed using molecular dynamics, and the half-maximal inhibitory concentration (IC(50)) of each toxin-channel complex is computed. We show that the IC(50) values predicted for three toxins and three channels match closely with experiment. Kv1.3 is half-blocked by 0.2 pM mutant OSK1; it is >10000-fold more specific for this channel than for Kv1.1 and Kv1.2.  相似文献   

13.
Grottesi A  Sansom MS 《FEBS letters》2003,535(1-3):29-33
Toxins that block voltage-gated potassium (Kv) channels provide a possible template for improved homology models of the Kv pore. In assessing the interactions of Kv channels and their toxins it is important to determine the dynamic flexibility of the toxins. Multiple 10 ns duration molecular dynamics simulations combined with essential dynamics analysis have been used to explore the flexibility of four different Kv channel-blocking toxins. Three toxins (Tc1, AgTx and ChTx) share a common fold. They also share a common pattern of conformational dynamics, as revealed by essential dynamics analysis of the simulation results. This suggests that some aspects of dynamic behaviour are conserved across a single protein fold class. In each of these three toxins, the residue exhibiting minimum flexibility corresponds to a conserved lysine residue that is suggested to interact with the filter domain of the channel. Thus, comparative simulations reveal functionally important conservation of molecular dynamics as well as protein fold across a family of related toxins.  相似文献   

14.
Yu K  Fu W  Liu H  Luo X  Chen KX  Ding J  Shen J  Jiang H 《Biophysical journal》2004,86(6):3542-3555
Based on a homology model of the Kv1.3 potassium channel, the recognitions of the six scorpion toxins, viz. agitoxin2, charybdotoxin, kaliotoxin, margatoxin, noxiustoxin, and Pandinus toxin, to the human Kv1.3 potassium channel have been investigated by using an approach of the Brownian dynamics (BD) simulation integrating molecular dynamics (MD) simulation. Reasonable three-dimensional structures of the toxin-channel complexes have been obtained employing BD simulations and triplet contact analyses. All of the available structures of the six scorpion toxins in the Research Collaboratory for Structural Bioinformatics Protein Data Bank determined by NMR were considered during the simulation, which indicated that the conformations of the toxin significantly affect both the molecular recognition and binding energy between the two proteins. BD simulations predicted that all the six scorpion toxins in this study use their beta-sheets to bind to the extracellular entryway of the Kv1.3 channel, which is in line with the primary clues from the electrostatic interaction calculations and mutagenesis results. Additionally, the electrostatic interaction energies between the toxins and Kv1.3 channel correlate well with the binding affinities (-logK(d)s), R(2) = 0.603, suggesting that the electrostatic interaction is a dominant component for toxin-channel binding specificity. Most importantly, recognition residues and interaction contacts for the binding were identified. Lys-27 or Lys-28, residues Arg-24 or Arg-25 in the separate six toxins, and residues Tyr-400, Asp-402, His-404, Asp-386, and Gly-380 in each subunit of the Kv1.3 potassium channel, are the key residues for the toxin-channel recognitions. This is in agreement with the mutation results. MD simulations lasting 5 ns for the individual proteins and the toxin-channel complexes in a solvated lipid bilayer environment confirmed that the toxins are flexible and the channel is not flexible in the binding. The consistency between the results of the simulations and the experimental data indicated that our three-dimensional models of the toxin-channel complex are reasonable and can be used as a guide for future biological studies, such as the rational design of the blocking agents of the Kv1.3 channel and mutagenesis in both toxins and the Kv1.3 channel. Moreover, the simulation result demonstrates that the electrostatic interaction energies combined with the distribution frequencies from BD simulations might be used as criteria in ranking the binding configuration of a scorpion toxin to the Kv1.3 channel.  相似文献   

15.
Isolated pore-lining helices derived from three types of K-channel have been analyzed in terms of their structural and dynamic features in nanosecond molecular dynamics (MD) simulations while spanning a lipid bilayer. The helices were 1) M1 and M2 from the bacterial channel KcsA (Streptomyces lividans), 2) S5 and S6 from the voltage-gated (Kv) channel Shaker (Drosophila melanogaster), and 3) M1 and M2 from the inward rectifier channel Kir6.2 (human). In the case of the Kv and Kir channels, for which x-ray structures are not known, both short and long models of each helix were considered. Each helix was incorporated into a lipid bilayer containing 127 palmitoyloleoylphosphatidylcholine molecules, which was solvated with approximately 4000 water molecules, yielding approximately 20, 000 atoms in each system. Nanosecond MD simulations were used to aid the definition of optimal lengths for the helix models from Kv and Kir. Thus the study corresponds to a total simulation time of 10 ns. The inner pore-lining helices (M2 in KcsA and Kir, S6 in Shaker) appear to be slightly more flexible than the outer pore-lining helices. In particular, the Pro-Val-Pro motif of S6 results in flexibility about a molecular hinge, as was suggested by previous in vacuo simulations (, Biopolymers. 39:503-515). Such flexibility may be related to gating in the corresponding intact channel protein molecules. Analysis of H-bonds revealed interactions with both water and lipid molecules in the water/bilayer interfacial region. Such H-bonding interactions may lock the helices in place in the bilayer during the folding of the channel protein (as is implicit in the two-stage model of membrane protein folding). Aromatic residues at the extremities of the helices underwent complex motions on both short (<10 ps) and long (>100 ps) time scales.  相似文献   

16.
17.
Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.  相似文献   

18.
The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (one in repeat I and the other in repeat IV) that align with Glu residues previously implicated in forming the binding sites for gating modifier toxins on K(+) and Na(+) channels. We found that mutation of the Glu residue in repeat I of the Ca(2+) channel had no significant effect on inhibition by omega-Aga-IVA, whereas the equivalent mutation of the Glu in repeat IV disrupted inhibition by the toxin. These results suggest that the COOH-terminal end of S3 within repeat IV contributes to forming a receptor for omega-Aga-IVA. The strong predictive value of previous mapping studies for K(+) and Na(+) channel toxins argues for a conserved binding motif for gating modifier toxins within the voltage-sensing domains of voltage-gated ion channels.  相似文献   

19.
The structurally defined sea anemone peptide toxins ShK and BgK potently block the intermediate conductance, Ca(2+)-activated potassium channel IKCa1, a well recognized therapeutic target present in erythrocytes, human T-lymphocytes, and the colon. The well characterized voltage-gated Kv1.3 channel in human T-lymphocytes is also blocked by both peptides, although ShK has a approximately 1,000-fold greater affinity for Kv1.3 than IKCa1. To gain insight into the architecture of the toxin receptor in IKCa1, we used alanine-scanning in combination with mutant cycle analyses to map the ShK-IKCa1 interface, and compared it with the ShK-Kv1.3 interaction surface. ShK uses the same five core residues, all clustered around the critical Lys(22), to interact with IKCa1 and Kv1.3, although it relies on a larger number of contacts to stabilize its weaker interactions with IKCa1 than with Kv1.3. The toxin binds to IKCa1 in a region corresponding to the external vestibule of Kv1.3, and the turret and outer pore of the structurally defined bacterial potassium channel, KcsA. Based on the NMR structure of ShK, we deduce the toxin receptor in IKCa1 to have x-y dimensions of approximately 22 A, a diameter of approximately 31 A, and a depth of approximately 8 A; we estimate that the ion selectivity lies approximately 13 A below the outer lip of the toxin receptor. These dimensions are in good agreement with those of the KcsA channel determined from its crystal structure, and the inferred structure of Kv1.3 based on mapping with scorpion toxins. Thus, these distantly related channels exhibit architectural similarities in the outer pore region. This information could facilitate development of specific and potent modulators of the therapeutically important IKCa1 channel.  相似文献   

20.
Using the patch-clamp technique we determined that Pandinus imperator toxin Pi1, a recently described peptide toxin having four disulfide bridges instead of the usual three in scorpion toxins, blocked Kv1.3 channels of human T lymphocytes from the extracellular side with a 1:1 stoichiometry. Kv1.3 block was instantaneous and removable with toxin-free extracellular solution. The toxin did not influence activation or inactivation of the channels. We found that Pi1 blocked Kv1.3 with less affinity (K(d) = 11.4 nM) than the structurally related three disulfide bridge containing toxins Pi2 (50 pM) and Pi3 (0.5 nM). The fourth disulfide bridge in Pi1 had no influence on the channel binding ability of the toxin; the less effective block was due to differences in amino acid side chain properties at positions 11 and 35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号