首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Friend murine erythroleukemia cells (MEL cells) contain a cAMP-independent protein kinase which phosphorylates the 100,000-Da catalytic subunit of the (Na,K)-ATPase both in living cells and in the purified plasma membrane (Yeh, L.-A., Ling, L., English, L., and Cantley, L. (1983) J. Biol. Chem. 258, 6567-6574). We have taken advantage of the selective phosphorylation of the 100,000-Da subunit in purified plasma membranes and the similarity between the proteolysis patterns of the MEL cell and dog kidney (Na,K)-ATPase to map the site of kinase phosphorylation on the MEL cell enzyme. The chymotryptic and tryptic cleavage sites of the dog kidney (Na,K)-ATPase have previously been located (Castro, J., and Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228). The 100,000-Da catalytic subunits of the dog kidney and MEL cell enzymes were specifically labeled at the active site aspartate residue by incubation with (32P)orthophosphate in the presence of Mg2+ and ouabain. Digestion of these two enzymes with chymotrypsin or trypsin revealed similar active site aspartate containing proteolytic fragments indicating a similar structure for the two enzymes. Chymotryptic digestions of MEL cell (Na,K)-ATPase labeled in vitro with [gamma-32P]ATP localize the region of kinase phosphorylation to within a 35,000-Da peptide derived from the middle of the 100,000-Da subunit. Tryptic digestion of the MEL cell plasma membranes degraded the 100,000-Da subunit to an NH2-terminal 43,000-Da peptide which contained the active site aspartate but which did not contain the kinase-labeled region. These results further locate the region of kinase phosphorylation to the COOH-terminal half of the 35,000-Da chymotryptic peptide. This location places the site of phosphorylation between the active site aspartate residue which accepts the phosphate of ATP during turnover and an ATP-binding site which has previously been located by labeling with fluorescein 5'-isothiocyanate (Carilli, C. T., Farley, R. A., Perlman, D. M., and Cantley, L. C. (1982) J. Biol. Chem. 257, 5601-5606). Phosphorylation of the (Na,K)-ATPase in this region may serve to regulate the activity of this enzyme.  相似文献   

2.
A tyrosine-specific protein kinase from Ehrlich ascites tumor cells   总被引:2,自引:0,他引:2  
A protein tyrosine kinase that phosphorylates both alpha and beta subunits of inactivated (Na+,K+)-ATPase from dog kidney was purified about 500-fold from Ehrlich ascites tumor cell membranes. The enzyme required divalent cations Mn2+, Mg2+, or Fe2+ but was inhibited by Cu2+ or Zn2+. The purified enzyme phosphorylated the beta subunit about five times faster than the alpha subunit of the (Na+,K+)-ATPase. The random polymer poly(Glu80Tyr20) was an excellent substrate while casein was only marginally phosphorylated. In contrast, the purified transforming gene product of Rous sarcoma virus phosphorylated all three substrates and the (Na+,K+)-ATPase was preferentially phosphorylated on the alpha subunit. The transforming gene product of Fujinami sarcoma visue and EGF receptor kinase from A431 cells phosphorylated (Na+,K+)-ATPase poorly whereas casein was an excellent substrate. The molecular weight of the partially purified protein tyrosine kinase from Ehrlich ascites tumor cells determined by gel filtration was about 60,000. One of two major phosphorylated phosphopeptides resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis had an Mr of 60 kDa, thus suggesting that it might be the autophosphorylated protein tyrosine kinase. A phosphatase that hydrolyzes phosphorylated histones or poly(Glu80Tyr20) was partially purified from the same membrane.  相似文献   

3.
Na+, K(+)-ATPase preparations of the rat and bovine brain and kidney were studied for ouabain sensitivity. Differences in apparent affinities to inhibitor of alpha(+)- and alpha-isozymes of Na+, K(+)-ATPase catalytic subunit were detected only in rat tissues but not in bovine ones. It is concluded that glycoside-sensitive and glycoside-resistant enzymic forms are not fully identical to alpha(+)- and alpha-subunit forms of Na+, K(+)-ATPase.  相似文献   

4.
Sodium- and potassium-activated adenosinetriphosphatase (Na+, K+-ATPase) purified from dog kidney outer medulla was examined by polyacrylamide gel electrophoresis and by photoaffinity labeling with N-(ouabain)-N'-(2-nitro-4-azidophenyl)-ethylenediamine (NAP-ouabain). The large subunit band (alpha-band) split into two bands on the gel after the enzyme was heat-treated in the presence of 1% sodium dodecylsulfate (SDS). Of the two bands (alpha I and alpha II), alpha I had the same electrophoretic mobility as the original band, while alpha II moved slightly faster. Total conversion into alpha II was not observed, about half of the original remaining as alpha I. Below 60 degree C, heat treatment did not produce alpha II. Phenylmethylsulfonyl fluoride did not prevent the appearance of alpha II. Both alpha I and alpha II were labeled with [3H]NAP-ouabain. Nonspecific incorporation of [3H]NAP-ouabain also occurred irrespective of illumination, but it was removed either by diffusion during staining and destaining of the gel or by treatment of the enzyme with trichloroacetic acid. It is tentatively concluded that the splitting of the band reflects some intrinsic differences in situ of the alpha-subunit of dog kidney membrane Na+,K+-ATPase.  相似文献   

5.
In kidney, Na+, K+-ATPase is an oligomer (alphabeta gamma) with equimolar amounts of essential alpha and beta subunits and one small hydrophobic FXYD protein (gamma subunit). This report describes gamma subunit as an activator of pig kidney outer medulla Na+, K+-ATPase in aqueous medium. The effects of gamma subunit on Na+, K+-ATPase were dose-dependent and preincubation-dependent. Changes in alphabeta/gamma stoichiometry did not alter Km1 for ATP, and slightly increased Km2, but Vmax was increased at both catalytic and regulatory sites. Hydroxylamine treatment of enzyme phosphorylated by ATP (E-P), in the presence of additional gamma subunit, revealed that 52% of the E-P accumulation was not via acyl-phosphate formation. The gamma subunit was phosphorylated by endogenous kinases and by commercial catalytic subunit of protein kinase A (PKA). Additionally, we demonstrated that PKA phosphorylation of gamma subunit increased its capacity to stimulate ATP hydrolysis. These results suggest that gamma subunit can act as an intrinsic Na+, K+-ATPase regulator in kidney.  相似文献   

6.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

7.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

8.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

9.
The dose dependence of the Na+, K(+)-ATPase ouabain inhibition in the rat colon smooth muscle permeabilized microsomes has been analyzed according to the model of two independent binding sites of inhibitor to determine the activity of separate molecular forms of the enzyme that differ by affinity for cardiac glycosides. The two-phase inhibition curve with moderate content of the high-affinity activity component was revealed. The apparent inhibition constant of the low-affinity component corresponds to the value for the rat kidney microsomal Na+, K(+)-ATPase (alpha1-isoform). The specific role of the alpha2- and alpha1- Na+, K(+)-ATPase catalytic subunit isoforms in colonic smooth muscle electromechanical coupling is considered.  相似文献   

10.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

11.
myo-Inositol uptake was investigated in a murine neuroblastoma clone (N1E-115) to determine the effect of altered Na+,K+-ATPase activity. The Na+ ionophore monensin, and veratridine, an alkaloid affecting voltage-dependent Na+ entry, increased acute 22Na+ uptake and 22Na+ efflux from pre-loaded cells, concomitant with enhanced myo-inositol uptake. This effect was also seen following insulin. Insulin-stimulated myo-inositol uptake was inhibited by amiloride, ouabain and pyrithiamine. Amiloride inhibition suggests that activation of Na+/H+ exchange preceding Na+,K+-ATPase activation is involved in insulin stimulation of myo-inositol uptake. Pyrithiamine inhibition is an indication of prior activation of the Na+,K+-ATPase alpha + catalytic subunit by insulin. The results provide evidence that insulin contributes to the maintenance of Na+,K+-ATPase in neuronal tissue.  相似文献   

12.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

13.
Antisera to purified (Na+, K+)-ATPase raised in rabbits and in sheep were purified by an absorption procedure employing purified canine kidney (Na+, K+)-ATPase. The antibodies were fractionated into two components, one which inhibited catalytic activity, and a second which inhibited ouabain binding. Under certain conditions, the fraction that inhibited ouabain binding also inhibited catalytic activity, and the effectiveness of both was dependent to some extent on the ligands present in the incubation medium. Thus, both antibody fractions appeared to detect conformations of the enzyme that depended upon ligand-induced perturbations. When the antibody raised against catalytic activity was incubated with erythrocyte membrane fragments, an inhibition of the (Na+, K+)-ATPase occurred, but only minimal or no effect on potassium influx or on digoxin-induced inhibition of potassium flux in intact erythrocytes was noted. In a similar experiment, however, the antibody against ouabain binding significantly inhibited potassium influx, suggesting specificity in terms of the macromolecular surfaces of the pump which were exposed to the external medium. We concluded that there may be organ and species differences among (Na+, K+)-ATPase preparations. Antibodies prepared in rabbits and sheep were fractionated by absorption to dog brain enzyme. Both the antibody fraction which bound to the brain enzyme and that which did not bind inhibited the dog kidney (Na+, K+)-ATPase, but only the former inhibited dog brain (Na+, K+)-ATPase. When the two fractions were recombined, inhibition was restored to the extent of the unfractionated antibody.  相似文献   

14.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

15.
SPAI-1, a peptide isolated from porcine duodenum, has been shown to inhibit Na+,K(+)-ATPase in vitro (Araki et al. (1989) Biochem. Biophys. Res. Commun. 164, 496-502). The characteristics of ATPase inhibition by this novel peptide were examined. SPAI-1 inhibited Na+,K(+)-ATPase preparations isolated from various organs of dog or rat or from sheep kidney with similar potency. Three isoforms of rat Na+,K(+)-ATPase had similar sensitivity to inhibition by SPAI-1 although these isoforms had remarkable differences in their sensitivity to the inhibitory effect of ouabain. Ca(2+)-ATPase isolated from the sarcoplasmic reticulum of rabbit skeletal muscle was insensitive to inhibition by SPAI-1. Ouabain-insensitive Mg(2+)-ATPase activity was unaffected by low concentrations of SPAI-1, but was stimulated at high concentrations. SPAI-1 inhibited H+,K(+)-ATPase from hog stomach in concentrations similar to that required for Na+,K(+)-ATPase inhibition. These results indicate that SPAI-1 is a specific inhibitor for monovalent cation transporting ATPases.  相似文献   

16.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

17.
The cDNAs encoding alpha 3-subunits of rat brain Na+,K+-ATPase and the neomycin resistance gene were incorporated into BALB/c 3T3 cells by the co-transfection method. Stably transformed cells were selected with 300 micrograms/ml of neomycin (G-418) for 6 weeks. Northern blot analysis using the 3'-non-translated region of the cDNA as a probe revealed that the alpha 3 mRNA appeared in transfected cells. Na+,K+-ATPase activity of the transfected cells was twice that of wild-type cells. Regarding ouabain sensitivity, the Na+,K+-ATPase showed two Ki values for ouabain (8 x 10(-8) and 4.5 x 10(-5) M) in transfected cells while wild-type cells displayed only the higher value. Ouabain sensitivity of Rb+ uptake also demonstrated two Ki values in the transfected cells (8 x 10(-8) and 4 x 10(-5) M) and a Ki in wild-type cells of 4 x 10(-5) M. It is concluded that alpha 3 is a highly ouabain-sensitive catalytic subunit of Na+,K+-ATPase. It is also suggested that ouabain sensitivity is exclusively determined by the properties of the alpha-subunit rather than the beta-subunit. This is the first report on the catalytic characteristics of the alpha 3 isoform of Na+,K+-ATPase.  相似文献   

18.
Madin-Darby canine kidney (MDCK) cells were mutagenized and variants resistant to 10, 160, and 2000 times the ouabain lethal dose for wild type cells selected. The phenotypes were stable in the absence of selection. The frequencies with which variants were recovered were consistent with genetic alterations being responsible for drug resistance. It was shown that 50% of the (Na+, K+)-ATPase activity present in mutant cells had a higher Kd for ouabain than normal while 50% remained wild type for ouabain binding. Wild type MDCK cells were measured to have 2 X 10(6) ouabain binding sites per cell with a Kd for the drug of 0.6-1.0 X 10(-7) M. The novel (Na+, K+)-ATPase activities in the mutants demonstrated Kd values for ouabain of 10(-5) M, 3 X 10(-4) M, or 3 X 10(-3) M for the different mutant classes tested. The rate of synthesis of the (Na+, K+)-ATPase as well as the total amount of enzyme per unit of cell protein was unaltered in the mutants. Comparison of the alpha subunit of the enzyme, known to contain the ouabain-binding site, by sodium dodecyl sulfate-gel electrophoresis did not reveal any difference in the size of this subunit in mutant versus wild type cells.  相似文献   

19.
The NH2-terminal amino acid sequence of the 100 kilodalton subunit of porcine gastric H+,K+-ATPase has been determined to be YKAENYELYQVELGPGP. Although the NH2-terminal region of this protein is not similar to the same region of the lamb kidney Na+,K+-ATPase catalytic subunit, other regions of these ATPase proteins appear to be homologous. Both monoclonal and polyclonal antibodies raised to lamb kidney Na+,K+-ATPase and its alpha, but not beta, subunit cross-react with the 100 kilodalton protein of H+,K+-ATPase.  相似文献   

20.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号