首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microsatellite markers RS46 (DXS548) and FRAXAC2 flanking the fragile X mutation, an expansion of a (CGG)n repeat within the FMR-1 gene, were typed in 60 unrelated northern and eastern Finnish fragile X families and in a control population from the same geographical region. A significant difference was found in allelic and haplotypic distributions between the normal X and fragile X chromosomes. Evidence for a strong founder effect was detected, with the haplotype 196-153 being present on 80% of the fragile X chromosomes, but on only 8% of the normal X chromosomes. In addition to this major haplotype, four minor haplotypes were found on the fragile X chromosomes. These results suggest that the majority of present-day fragile X mutations in Finland may have a common initial ancestor, probably from the 16th century.  相似文献   

2.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

3.
The CGG repeat within the X-chromosome-linked FMR1 gene, which in hyperexpansion (> 200 copies) results in fragile X syndrome, is highly polymorphic. The mechanism of expansion is not well understood, but CGG repeats called intermediate-length or gray zone alleles (approximately equal 35-60 repeats) are thought to make up the FMR1 alleles showing initial steps in this expansion process. It has been hypothesized that the background haplotype of these alleles plays a role in their susceptibility to expansion. In this study we investigate whether or not the frequencies of alleles and haplotypes at four marker loci in the FMR1 gene region (microsatellites DXS548 and FRAXAC1 and SNPs ATL1 and FMRb) in 84 intermediate-length male chromosomes differ from those in 94 common-size male alleles. The ATL1*G and FMRB*A alleles were more frequent among intermediate-length alleles than among common alleles. In addition, the DXS548-FRAXAC1 T50-T42 and T40-T42 haplotypes were strongly associated with intermediate-length alleles between 41 and 60 CGG repeats (p < 0.001). Two extended haplotypes, DXS548-FRAXAC1-ATL1-FMRb T50-T42-G-A and T40-T42-G-A, are strongly associated (p < 0.001) with intermediate-length alleles between 41 and 60 CGG repeats, and these haplotypes have also been reported as fragile X associated haplotypes in European populations. These data suggest that these haplotypes are among the most susceptible to further expansion among the intermediate-length alleles. T50-T42-G-A was also much more prevalent in males with 35-40 CGG repeats than in males with common-size alleles. ATL1 did not increase discrimination among intermediate-length alleles beyond that detected by DXS548-FRAXAC1 haplotypes, but the FMRb locus did, particularly for the DXS548-FRAXAC1-ATL1 T50-T42-G and T40-T42-G haplotypes. Comparison with fragile X associated haplotypes, from the literature, suggests that repeat hyperexpansion occurs most frequently on chromosomes carrying FMRB*A. Within the intermediate-length allele category, however, there were some significant differences in haplotype frequencies between smaller and larger alleles, and this finding has implications for future studies.  相似文献   

4.
Fragile X syndrome, the most common inherited form of mental retardation, arises in individuals with more than 200 CGG repeats in the 5 untranslated region of the fragile X mental retardation 1 (FMR1) gene. Although CGG repeat numbers comparable to those found in the normal human population are found in various non-human primates, neither the within-species size variation nor the propensity for expansion of the CGG repeat has been described for any non-human primate species. The allele distribution has now been determined for FMR1 (homologue) CGG repeats of 265 unrelated founder females of Macaca mulatta monkeys. Among 530 X chromosomes, at least 26 distinct repeat lengths were identified, ranging from 16 to 54 CGG repeats. Of these alleles 79% have between 25 and 33 CGG repeats. Detailed examination of the CGG region revealed a conserved G (CGG)2 G interruption, although in no case was an AGG trinucleotide detected. Two animals carried borderline premutation alleles with 54 CGG repeats, within the region of marginal instability for humans. Thus, M. mulatta may be useful as an animal model for the study of fragile X syndrome.  相似文献   

5.
In this study, we have characterized a CGG repeat at the FMR-1 locus in more than 100 families (more than 500 individuals) presenting for fragile X testing and in 247 individuals from the general population. Both Southern blot and PCR-based assays were evaluated for their ability to detect premutations, full mutations, and variability in normal allele sizes. Among the Southern blot assays, the probes Ox1.9 or StB12.3 with a double restriction-enzyme digest were the most sensitive in detecting both small and large amplifications and, in addition, provided information on methylation of an adjacent CpG island. In the PCR-based assays, analysis of PCR products on denaturing DNA sequencing gels allowed the most accurate determination of CGG repeat number up to approximately 130 repeats. A combination of a Southern blot assay with a double digest and the PCR-sequencing-gel assay detected the spectrum of amplification-type mutations at the FMR-1 locus. In the patient population, a CGG repeat of 51 was the largest to be stably inherited, and a repeat of 57 was the smallest size of premutation to be unstably inherited. When premutations were transmitted by females, the size of repeat correlated with risk of expansion to a full mutation in the next generation. Full mutations (large repeats typically associated with an abnormal methylation pattern and mitotic instability) were associated with clinical and cytogenetic manifestations in males but not necessarily in females. In the control population, the CGG repeat ranged from 13 to 61, but 94% of alleles had fewer than 40 repeats. The most frequent allele (34%) was a repeat of 30. One female had an allele (61 repeats) within a range consistent with fragile X premutations, while two other individuals each had a repeat of 52. This suggests that the frequency of unstable alleles in the general population may be approximately 1%.  相似文献   

6.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

7.
Fragile X syndrome results from mutations in a (CGG)n repeat found in the coding sequence of the FMR-1 gene. Analysis of length variation in this region in normal individuals shows a range of allele sizes varying from a low of 6 to a high of 54 repeats. Premutations showing no phenotypic effect in fragile X families range in size from 52 to over 200 repeats. All alleles with greater than 52 repeats, including those identified in a normal family, are meiotically unstable with a mutation frequency of one, while 75 meioses of alleles of 46 repeats and below have shown no mutation. Premutation alleles are also mitotically unstable as mosaicism is observed. The risk of expansion during oogenesis to the full mutation associated with mental retardation increases with the number of repeats, and this variation in risk accounts for the Sherman paradox.  相似文献   

8.
Sharma D  Gupta M  Thelma BK 《Human genetics》2003,112(3):262-271
This study on allelic/haplotypic fragile X associations evaluated using STR (DXS548, FRAXAC1, FRAXAC2) and SNP (ATL1) markers flanking the (CGG)(n) locus of FMR1is the first report from the large ethnically complex Indian population. Results have been compared with allele/haplotype distributions reported for other major ethnic groups, including White Caucasians, Africans, and Pacific Asians. Though overall allele frequency distributions at the individual loci are more similar to Western Caucasians compared with others, significant differences are observed in haplotypic associations with the mutated X. The striking findings are: (1) high diversity and heterozygosity of haplotypes among fragile X chromosomes ( n=40) and controls ( n=262), including four haplotypes found exclusively in this study sample; (2) weak association of DXS548-FRAXAC1-FRAXAC2 haplotypes, 2-1-3, 6-3-3+ and 7-4-6+ with the disorder, and absence of White Caucasian fragile X haplotypes 6-4-4 and 6-4-5; (3) weak founder effect for the fragile X expansion mutation in the Indians; (4) lack of a continuum of haplotype-based FMR1 alleles between intermediate (CGG)(n) size ranges and expanded alleles; (5) exclusion of ATL1 as a candidate genetic indicator of FMR1 instability. The high STR-based haplotype diversity observed among fragile X lineages, irrespective of ethnic alliances, strongly suggests the inappropriateness of using STR haplotypes to infer predisposition to instability among ethnically separated fragile X pedigrees and may reiterate the need for identifying newer SNPs from this region to not only determine true founder effects for the fragile X mutation, but also decipher possible mechanisms leading to CGG instability.  相似文献   

9.
The fragile X syndrome is the second leading cause of mental retardation after Down syndrome. Fragile X premutations are not associated with any clinical phenotype but are at high risk of expanding to full mutations causing the disease when they are transmitted by a carrier woman. There is no reliable estimate of the prevalence of women who are carriers of fragile X premutations. We have screened 10,624 unselected women by Southern blot for the presence of FMR1 premutation alleles and have confirmed their size by PCR analysis. We found 41 carriers of alleles with 55-101 CGG repeats, a prevalence of 1/259 women (95% confidence interval 1/373-1/198). Thirty percent of these alleles carry an inferred haplotype that corresponds to the most frequent haplotype found in fragile X males and may indeed constitute premutations associated with a significant risk of expansion on transmission by carrier women. We identified another inferred haplotype that is rare in both normal and fragile X chromosomes but that is present on 13 (57%) of 23 chromosomes carrying FMR1 alleles with 53-64 CGG repeats. This suggests either (1) that this haplotype may be stable or (2) that the associated premutation-size alleles have not yet reached equilibrium in this population and that the incidence of fragile X syndrome may increase in the future.  相似文献   

10.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   

11.
In order to investigate the origin of mutations responsible for the fragile X syndrome, two polymorphic CA repeats, one at 10 kb (FRAXAC2) and the other at 150 kb (DXS548) from the mutation target, were analyzed in normal and fragile X chromosomes. Contrary to observations made in myotonic dystrophy, fragile X mutations were not strongly associated with a single allele at the marker loci. However, significant differences in allelic and haplotypic distributions were observed between normal and fragile X chromosomes, indicating that a limited number of primary events may have been at the origin of most present-day fragile X chromosomes in Caucasian populations. We propose a putative scheme with six founder chromosomes from which most of the observed fragile X–linked haplotypes can be derived directly or by a single event at one of the marker loci, either a change of one repeat unit or a recombination between DXS548 and the mutation target. Such founder chromosomes may have carried a number of CGG repeats in an upper-normal range, from which recurrent multistep expansion mutations have arisen.  相似文献   

12.
Handa V  Saha T  Usdin K 《Nucleic acids research》2003,31(21):6243-6248
We show here that under physiologically reasonable conditions, CGG repeats in RNA readily form hairpins. In contrast to its DNA counterpart that forms a complex mixture of hairpins and tetraplexes, r(CGG)22 forms a single stable hairpin with no evidence for any other folded structure even at low pH. RNA with the sequence (CGG)9AGG (CGG)12AGG(CGG)97, found in a fragile X syndrome pre-mutation allele, forms a number of different hairpins. The most prominent hairpin forms in the 3′ part of the repeat and involves the 97 uninterrupted CGG repeats. In contrast to the CUG-RNA hairpins formed by myotonic dystrophy type 1 repeats, we found no evidence that CGG-RNA hairpins activate PKR, the interferon-inducible protein kinase that is activated by a wide range of double-stranded RNAs. However, we do show that the CGG-RNA is digested, albeit inefficiently, by the human Dicer enzyme, a step central to the RNA interference effect on gene expression. These data provide clues to the basis of the toxic effect of CGG-RNA that is thought to occur in fragile X pre-mutation carriers. In addition, RNA hairpins may also account for the stalling of the 40S ribosomal subunit that is thought to contribute to the translation deficit in fragile X pre-mutation and full mutation alleles.  相似文献   

13.
Previous studies have shown that specific short-tandem-repeat (STR) and single-nucleotide-polymorphism (SNP)-based haplotypes within and among unaffected and fragile X white populations are found to be associated with specific CGG-repeat patterns. It has been hypothesized that these associations result from different mutational mechanisms, possibly influenced by the CGG structure and/or cis-acting factors. Alternatively, haplotype associations may result from the long mutational history of increasing instability. To understand the basis of the mutational process, we examined the CGG-repeat size, three flanking STR markers (DXS548-FRAXAC1-FRAXAC2), and one SNP (ATL1) spanning 150 kb around the CGG repeat in unaffected (n=637) and fragile X (n=63) African American populations and compared them with unaffected (n=721) and fragile X (n=102) white populations. Several important differences were found between the two ethnic groups. First, in contrast to that seen in the white population, no associations were observed among the African American intermediate or "predisposed" alleles (41-60 repeats). Second, two previously undescribed haplotypes accounted for the majority of the African American fragile X population. Third, a putative "protective" haplotype was not found among African Americans, whereas it was found among whites. Fourth, in contrast to that seen in whites, the SNP ATL1 was in linkage equilibrium among African Americans, and it did not add new information to the STR haplotypes. These data indicate that the STR- and SNP-based haplotype associations identified in whites probably reflect the mutational history of the expansion, rather than a mutational mechanism or pathway.  相似文献   

14.
We have studied the ethnic distribution of the fragile X syndrome in Israel and have found that 36/136 (26.5%) of apparently unrelated pedigrees were of Tunisian Jewish descent. The Tunisian Jews, however, constitute only 2%-3% of the general Israeli population, identifying the first ethnic group significantly (P < .001) predisposed to the development of this disease. Associated with this increase in disease prevalence, we have found an unusually high incidence of FMR1 CGG repeats devoid of AGG interruptions among the normal Tunisian Jewish population (30/150, or 20.0%). Furthermore, the proportion of these alleles beyond the FMR1 CGG repeat instability threshold (>35 repeats) (8/150, or 5.3%) was significantly greater (P < .04) than that proportion found among non-Tunisian Jewish controls in Israel (1/136). Haplotype analysis has indicated that these large uninterrupted CGG repeat alleles are present on a previously unreported (DXS548-FRAXAC1-FRAXAC2) haplotype that accounts for all observed cases of disease among Tunisian Jewish X chromosomes. The high prevalence of disease among Tunisian Jews, we suggest, is due to a founder effect of this rare haplotype, which is completely devoid of AGG interruptions in the Jewish population of Tunisia.  相似文献   

15.
Molecular genetic analysis of individuals from 6 Egyptian and 33 German families with fragile X syndrome and 240 further patients with mental retardation was performed applying a completely non-radioactive system. The aim of our study was the development of a non-radioactive detection method and its implementation in molecular diagnosis of the fragile X syndrome. Furthermore, we wanted to assess differences in the mutation sizes between Egyptian and German patients and between Egyptian and German carriers of a premutation. Using non-radioactive polymerase chain reaction (PCR), agarose gel electrophoresis and blotting of the PCR products, followed by hybridisation with a digoxigenin-labelled oligonucleotide probe (CGG)5 and chemiluminescent detection, we identified the fragile X full mutation (amplification of a CGG repeat in the FMR-1 gene ranging from several hundred to several thousand repeat units) in all patients. We observed no differences in the length of the CGG repeat between the Egyptian and German patients and carriers, respectively. However, in one prenatal diagnosis, we detected only one normal sized allele in a female fetus using the PCR-agarose assay, whereas Southern blot analysis with the digoxigenin labelled probe StB 12.3 revealed presence of a full mutation. Our newly established nonradioactive genomic blotting method is based on the conventional radioactive Southern blot analysis. Labelling of the probe StB 12.3 with digoxigenin via PCR allowed the detection of normal, premutated and fully mutated alleles. For exact sizing of small premutated or large normal alleles, we separated digoxigenin labelled PCR products through denaturing poly-acrylamide gelelectrophoresis (PAGE) and transfered them to a nylon membrane using a gel dryer. The blotted PCR-fragments can easily be detected with alkaline phosphate-labelled anti-digoxigenin antibody. The number of trinucleotide repeat units can be determined by scoring the detected bands against a digoxigenated M13 sequencing ladder. Our newly developed digoxigenin/chemiluminescence approach using PCR and Southern blot analysis provides reliable results for routine detection of full fragile X mutations and premutations.  相似文献   

16.
Fragile X syndrome is associated with an unstable CGG repeat sequence in the 5' untranslated region of the first exon of the FMR1 gene. The present study involved the evaluation of factors implicated in CGG repeat stability in a normal sample from two Basque valleys (Markina and Arratia), to discover whether the Basque population shows allelic diversity and to identify factors involved, by using the data in conjunction with previous findings. The study was based on a sample of 204 and 58 X chromosomes from the Markina and Arratia valleys, respectively. The CGG repeat, the AGG interspersion and two flanking microsatellite markers, FRAXAC1 and DXS548, were examined. In the Markina valley, gray zone alleles (> or =35 CGG repeats) were associated with anchoring AGGs, with the longest 3' pure CGG repeats of the valley (=15), with the 5' instability structure 9+n and with one principal fragile X FRAXAC1-DXS548 haplotype 42-50. In the Arratia valley, gray zone alleles (> or =35 CGG repeats) showed the highest frequency among the Basque samples analyzed, and were associated with anchoring AGGs, with the longest 3' pure repeats (> or =20), with the 5' instability structure 9+n and with one "normal" FRAXAC1-DXS548 haplotype 38-40 (these data from Arratia suggest the existence of a "protective" haplotype). The results showed, on the one hand, differences between Markina and Arratia in factors implicated in CGG repeat instability and, on the other hand, a great similarity between the general Basque sample from Biscay and the Markina valley.  相似文献   

17.
The fragile X syndrome, the most common inherited form of mental retardation, is caused by the expansion of a CGGn trinucleotide repeat in the FMR-1 gene. Although the repeat number usually increases during transmission, few cases with reduction of an expanded CGGn repeat back to the normal size range have been reported. We describe for the first time a family in which such reduction has occurred in the paternal transmission. The paternal premutation (delta = 300 bp) was not detected in one of the five daughters or in the son of this daughter, although he had the grandpaternal RFLP haplotype. Instead, fragments indicating the normal CGGn repeat size were seen on a Southern blot probed with StB12.3. PCR analysis of the CGGn repeat confirmed this; in addition to a maternal allele of 30 repeats, an allele of 34 repeats was detected in the daughter and, further, in her son. Sequencing of this new allele revealed a pure CGGn repeat configuration without AGG interruptions. No evidence for a somatic mosaicism of a premutation allele in the daughter or a normal allele in her father was detected when investigating DNA derived from blood lymphocytes and skin fibroblasts. Another unusual finding in this family was lack of the PCR product of the microsatellite marker RS46 (DXS548) in one of the grandmaternal X chromosomes, detected as incompatible inheritance of RS46 alleles. The results suggest an intergenerational reduction in the CGGn repeat from premutation size to the normal size range and stable transmission of the contracted repeat to the next generation. However, paternal germ-line mosaicism could not be excluded as an alternative explanation for the reverse mutation.  相似文献   

18.
The CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) exhibits remarkable instability upon transmission from mothers with premutation alleles. A collaboration of 13 laboratories in eight countries was established to examine four issues concerning FMR1 CGG-repeat instability among females with premutation (approximately 55-200 repeats) and intermediate (approximately 46-60 repeats) alleles. Our central findings were as follows: (1) The smallest premutation alleles that expanded to a full mutation (>200 repeats) in one generation contained 59 repeats; sequence analysis of the 59-repeat alleles from these two females revealed no AGG interruptions within the FMR1 CGG repeat. (2) When we corrected for ascertainment and recalculated the risks of expansion to a full mutation, we found that the risks for premutation alleles with <100 repeats were lower than those previously published. (3) When we examined the possible influence of sex of offspring on transmission of a full mutation-by analysis of 567 prenatal fragile X studies of 448 mothers with premutation and full-mutation alleles-we found no significant differences in the proportion of full-mutation alleles in male or female fetuses. (4) When we examined 136 transmissions of intermediate alleles from 92 mothers with no family history of fragile X, we found that, in contrast to the instability observed in families with fragile X, most (99/136 [72.8%]) transmissions of intermediate alleles were stable. The unstable transmissions (37/136 [27.2%]) in these families included both expansions and contractions in repeat size. The instability increased with the larger intermediate alleles (19% for 49-54 repeats, 30.9% for 55-59, and 80% for 60-65 repeats). These studies should allow improved risk assessments for genetic counseling of women with premutation or intermediate-size alleles.  相似文献   

19.
Polymerase chain reaction analysis of fragile X mutations   总被引:5,自引:0,他引:5  
Summary The mutation that underlies the fragile X syndrome is presumed to be a large expansion in the number of CGG repeats within the gene FMR-1. The unusually GC-rich composition of the expanded region has impeded attempts to amplify it by the polymerase chain reaction (PCR). We have developed a PCR protocol that successfully amplifies the (CGG)n region in normal, carrier and affected individuals. The PCR analysis of several large fragile X families is presented. The PCR results agree with those obtained by direct genomic Southern blot analyses. These favorable comparisons suggest that the PCR assay may be suitable for rapid testing for fragile X mutations and premutations and genetic screening of at-risk individuals.  相似文献   

20.
We have evaluated the structure of the CGG repeat within the FMR1 gene of an Asian population and found the most common size of the repeat to be 29 and 30 with a minor population of 36 repeats. We have isolated and sequenced DNA containing the 36 repeats and found the basis sequence to be (CGG)9AGG(CGG)9AGG(CGG)6AGG(CGG)9; with a (CGG)6)AGG insertion, designated as 9A9A6A9. Of 144 Asian chromosomes, 11 (8%) had sequences with this insertion. Six different variations of the basic sequence were observed in the population: 9A9A6A2A9, 9A9A6A11, 9A9A16, 9A9A15, 8A9A6A6A9, and 11A6A6A9. All but one of the chromosomes with the insertion had the haplotype of DXS548/ FRAXAC1: 194/D suggesting that the sequences with the 6A insertion arose from a single ancestral allele. We have not observed the insertion in the FMR1 gene of Caucasians or Native Americans. The (CGG)6AGG insertion may be unique to Asians. Received: 3 December 1996 / Revised: 14 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号