首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The senescence accelerated mouse, strain P6 (SAMP6) has been described as a model of senile osteoporosis. Recent results from whole-bone bending tests indicate that, despite having increased moments of inertia, SAMP6 long bones are weak and brittle compared to SAMR1 controls. In the current study we determined material properties of cortical bone from SAMP6 and SAMR1 femora and tibiae by two methods-nanoindentation and whole-bone bending tests combined with simple beam theory. We hypothesized that: (1) SAMP6 mice have reduced cortical bone material properties compared to SAMR1 controls; and (2) modulus estimated from whole-bone bending tests correlates well with modulus determined by nanoindentation. Results from nanoindentation indicated that modulus and hardness are approximately 10% higher in SAMP6 mice compared to SAMR1 controls (p<0.001), a finding consistent with slightly higher mineralization in SAMP6 bones. Despite their superior elastic and hardness properties, the bending failure properties of SAMP6 bones were markedly inferior--ultimate stress and toughness were reduced by 40% and 60%, respectively (p<0.001). Comparisons between the two testing methods for determining modulus showed poor agreement. Modulus estimated from whole-bone bending tests was not correlated with modulus determined by nanoindentation (p=0.054; r2=0.03) and the absolute values differed by a factor of five between the two methods (bending [wet], 6GPa; nanoindentation [dry], 31GPa). Moreover, relative differences between groups were inconsistent between the two methods. We conclude: (1) cortical bone from the SAMP6 mouse has increased modulus and hardness but poor material strength and toughness, which underscores the relevance of the SAMP6 mouse for studies of skeletal fragility, and (2) values of elastic modulus of bone tissue estimated using simple beam theory and bending tests of mouse femora and tibiae are inaccurate and should be interpreted with caution.  相似文献   

2.
Bone curvature: sacrificing strength for load predictability?   总被引:4,自引:0,他引:4  
Nearly all long bones of terrestrial mammals that have been studied are loaded in bending. Yet bending requires greater bone mass than axial compression for effective support of equivalent static loads. Most long bones, in fact, are curved along their length; their curvature augmenting rather than diminishing stresses developed due to bending. The most "efficient" design of a bone (maximal strength per unit mass) should be a form which is straight and resists axial compression. Bone curvature and the bending developed in the long bones of most species studied, therefore, poses a paradox in design. However, under natural conditions an animal's skeleton must support a range of dynamic loads that vary in both direction and magnitude. Thus, improved predictability of dynamic loading should represent an important feature in the design of the bone, in addition to its absolute strength. We present an explanation of long bone curvature, based on the conditions of stability for bending vs. axial compression in a column, that describes this apparent design paradox as a mechanism for improving the predictability of loading direction (and, consequently, the pattern of stresses within the bone). Our hypothesis argues that in order to understand the design "effectiveness" of long bone shape the role of the bone as a structural unit must be redefined to one in which bone strength is optimized concurrently with loading predictability. In agreement with our hypothesis, bone curvature appears to meet this requirement.  相似文献   

3.
This paper describes a technique for characterizing strains and stresses induced in vivo in the rat tibia during application of an external four-point bending load. An external load was applied through the muscle and soft tissue with a four-point bending device, to induce strain in a 11 mm section of the right tibiae of ten adult female Sprague-Dawley rats. Induced strains were measured in vivo on the lateral surface of the tibia. Inter-rat difference, leg positioning and strain gage placement were evaluated as sources of variability of applied strains. Beam bending theory was used to predict externally induced in vivo strains. Finite element analysis was used to quantify the magnitude of shear stresses induced by this type of loading. There was a linear relationship between applied load and induced in vivo strains. In vivo strains induced by external loading were linearly correlated (R2 = 0.87) with the strains calculated using beam bending theory. The finite element analysis predicted shear stresses at less than 10% of the longitudinal stresses resulting from four-point bending. Strains predicted along the tibia by finite element analysis and beam bending theory were well-correlated. Inter-rat variability due to tibia size and shape difference was the most important source of variation in induced strain (CV = 21.6%). Leg positioning was less important (CV = 9.5%).  相似文献   

4.
Mechanistic interpretations of bone cross-sectional shapes are based on the paradigm of shape optimization such that bone offers maximum mechanical resistance with a minimum of material. Recent in vivo strain studies (Demes et al., Am J Phys Anthropol 106 (1998) 87-100, Am J Phys Anthropol 116 (2001) 257-265; Lieberman et al., Am J Phys Anthropol 123 (2004) 156-171) have questioned these interpretations by demonstrating that long bones diaphyses are not necessarily bent in planes in which they offer maximum resistance to bending. Potential limitations of these in vivo studies have been pointed out by Ruff et al. (Am J Phys Anthropol 129 (2006) 484-498). It is demonstrated here that two loading scenarios, asymmetric bending and buckling, would indeed not lead to correct predictions of loads from strain. It is also shown that buckling is of limited relevance for many primate long bones. This challenges a widely held view that circular bone cross sections make loading directions unpredictable for bones which is based on a buckling load model. Asymmetric bending is a potentially confounding factor for bones with directional differences in principal area moments (I(max) > I(min)). Mathematical corrections are available and should be applied to determine the bending axis in such cases. It is concluded that loads can be reliably extrapolated from strains. More strain studies are needed to improve our understanding of the relationships between activities, bone loading regimes associated with them, and the cross-sectional geometry of bones.  相似文献   

5.
A limb bone will be lighter if it is made thinner. However, thinner bones are more flexible (for given length and shape of cross-section) so their muscles must shorten more to move the distal end of the bone against a resisting force. To shorten more, a muscle needs longer muscle fibres and so must be heavier. Thus a particular thickness for the bone will enable the combined mass of bone plus muscle to be minimized. Peak stresses due to bending moments, in bones that were optimized according to this criterion, would be about ±70 MPa. Stresses of about this magnitude have been found in leg bones of various mammals, in strenuous activities such as running and jumping. However, similar stresses might be predicted on grounds of strength requirements, to give adequate factors of safety.  相似文献   

6.
The primary goal of this study is to advance our current understanding of infant rib injuries in the setting of child abuse. To this end, we employed finite element model simulations to determine the sensitivity of an infant rib's stress response to varying material properties and under varying degrees of anterior-posterior chest compression. Using high-resolution chest CT images obtained from a 6-day-old infant, we constructed a simplified geometric model consisting of bone and cartilage structures. To simulate the lateral gripping of an infant in child abuse, an anterior-posterior chest compression load was applied to cause increased stresses along the costovertebral articulation, a classic site for inflicted rib fractures. A sensitivity analysis was conducted to quantify the effects of varying Young's modulus and Poisson's ratio of the bones and cartilages. In addition, we varied the amount of anterior-posterior chest displacement to assess the sensitivity of this parameter to the rib's stress profile. We found that varying Young's modulus of the bone and cartilage not only changed the magnitude but also the shape profile of the rib's stress response. In contrast, varying the degree of chest compression only changed the magnitude of the stress response and not the shape profile. We also discovered that by varying Poisson's ratio of the bone and cartilage, no appreciable change was seen in the magnitude or the shape profile of the rib's stress response. Finite element modeling shows promise as a tool to elucidate the mechanisms of rib fractures in abused infants.  相似文献   

7.
Total variation in any measured variable, in conjunction with expected treatment effect, defines the minimum sample size (minSS) required to detect the expected effect with statistical confidence should the effect truly exist. A comprehensive literature survey of 3472 original studies was carried out to identify studies with biomechanical testing of whole bones. Total variation in common biomechanical traits and expected treatment effects in typical interventions were statistically determined. According to this survey, total variation in biomechanical traits between different species of experimental animals was similar, justifying the use of rat femur as a model in further analyses. Due to poorer precision, stiffness and energy absorption assessment require substantially larger sample size than breaking load. Due to same reason, minSS for femoral neck compression test is considerably larger than for femoral shaft three-point bending test. For the bending test, minSS to show a 10% treatment effect in the breaking load with 80% statistical power is 11rats/group, while corresponding minSS is 23 for the stiffness, and 53 for the energy absorption. For the femoral neck compression test, minSSs are 16, 51, and 134rats/group, respectively. Among the reviewed studies, the mean sample size was 11animals/group. This underscores the need for considerably larger sample sizes in experimental bone interventions which employ mechanical traits as primary outcome variables. In particular, poor precision and generally small expected treatment effects compromise the utility of stiffness and energy absorption assessments in experimental bone interventions.  相似文献   

8.
Functional differentiation of long bones in lorises   总被引:2,自引:0,他引:2  
The external dimensions of the limb bones and the geometry of their midshaft cross-sections were determined for Loris tardigradus and Nycticebus coucang. Relative cortical thickness, cortical area, and second moment of area were calculated and contrasted with locomotor stresses. The difference in shape-related strength of the bones between the smaller- and the larger-bodied species is more pronounced than can be expected from stresses acting during normal locomotion. The Nycticebus skeleton has a much higher safety margin overall and seems to be dimensioned for infrequent but critical stresses of high magnitude. Lorisine gaits in general are characterized by low ground reaction forces, great mobility in all joints, and a nearly equal share in propulsion and weight-bearing by the fore- and hindlimb. Accordingly, the long bones of lorises (especially those of L. tardigradus) tend to be less rigid than those of other mammalian species (including other primates), they lack a preferential plane of higher bending strength, and femur and humerus do not differ markedly in their capacity to withstand mechanical stresses. External dimensions of the humerus and femur of the two African lorisine species parallel and corroborate these results. Some more general implications for the relationships between bone shape and locomotor stresses are also discussed.  相似文献   

9.
The incidence of pneumatization in avian long bones was studied, by direct observation, in a large sample of species. Only proximal bones (humerus and femur) presented pneumatization in the sample studied. The incidence obtained was related to the variation of the maximum cortical thickness and mechanical properties, such as bending strength and flexural Young's modulus. Cortical thickness, bending strength and flexural Young's modulus were significantly lower in pneumatized bones than in marrow-filled bones. Furthermore, some congruence was found between pneumatization and systematic groups when compared. In this sense, Charadriformes was the only order studied with total absence of long bone pneumatization. Results on cortical thickness appear to be in agreement with modelling predictions previously made and with results obtained on other groups of flying vertebrates. The possible selective advantage of reduction in cortical thickness in relation to flying is suggested.  相似文献   

10.
A flexural model of four-point bending fatigue that has been experimentally validated for human cortical bone under load control was used to determine how load and displacement control testing affects the fatigue behavior of human cortical bone in three-point and symmetric four-point bending. Under load control, it was predicted that three-point bending produced no significant differences in fatigue life when compared to four-point bending. However, three-point bending produced less stiffness loss with increasing cycles than four-point bending. In four-point bending, displacement control was predicted to produce about one and a half orders of magnitude greater fatigue life when compared to load control. This prediction agrees with experimental observations of equine cannon bone tested in load and displacement control (Gibson et al., 1998). Displacement controlled three-point bending was found to produce approximately a 25% greater fatigue life when compared to load control. The prediction of longer fatigue life under displacement control may have clinical relevance for the repair of damaged bone. The model can also be adapted to other geometric configurations, including modeling of whole long bones, and with appropriate fatigue data, other cortical bone types.  相似文献   

11.
To identify behaviorally significant differences in bone structure it is first necessary to control for the effects of body size and body shape. Here the scaling of cross-sectional geometric properties of long bone diaphyses with different "size" measures (bone length, body mass, and the product of bone length and body mass) are compared in two modern human populations with very different body proportions: Pecos Pueblo Amerindians and East Africans. All five major long bones (excluding the fibula) were examined. Mechanical predictions are that cortical area (axial strength) should scale with body mass, while section modulus (bending/torsional strength) should scale with the product of body mass and moment arm length. These predictions are borne out for section moduli, when moment arm length is taken to be proportional to bone length, except in the proximal femoral diaphysis, where moment arm length is proportional to mediolateral body breadth (as would be expected given the predominance of M-L bending loads in this region). Mechanical scaling of long bone bending/torsional strength is similar in the upper and lower limbs despite the fact that the upper limb is not weight-bearing. Results for cortical area are more variable, possibly due to a less direct dependence on mechanical factors. Use of unadjusted bone length alone as a "size" measure produces misleading results when body shape varies significantly, as is the case between many modern and fossil hominid samples. In such cases a correction factor for body shape should be incorporated into any "size" standardization.  相似文献   

12.
Rats are a common model for the study of bone healing, with the cranium, femur, and tibia being the bones studied most frequently. This study examines noncritical-sized lesions that would allow rats to continue to bear weight without the need for fixation but that are sufficiently large to enable characterization of the healing process. We compared the femoral bone strength associated with 3 lesion sizes selected for use in future studies. Sprague–Dawley rats (age, 10 to 16 wk) were used to assess the ultimate breaking strength, stress, and break force of normal, unmanipulated femurs. We then created lesions of 3 different sizes in the mid- to distal diaphysis of the left and right femurs and characterized the associated decreases in bone strength. Femurs (n= 85) for this study were collected through tissue sharing from rats used in other acute surgical procedures and were tested by using a 3-point bending flexural materials-testing machine. Our hypothesis was that, as a model for bone healing, 3 induced lesions of different sizes would show incremental and proportional decreases in femoral strength, with the intermediate-sized (1.5-mm) lesion demonstrating a decrease of 20% to 40%. A lesion of 1.5 mm yielded a decrease in strength of 17% for both the left and right femurs. The strength of left femurs carrying intermediate lesions was significantly less than that of control, uninjured femur bones. In addition to providing validation for our own future bone-healing project, these data are a useful baseline for other investigators studying bone healing in a rat femur model.Rodents, particularly rats, represent a reliable and affordable model for conducting basic research involving the skeleton.2 Although biomechanical techniques for testing bone strength have been well documented, few studies define the theory, methods, and experimental procedures for evaluating the fracture toughness of bone (fracture resistance), especially whole-bone testing in small animals.10 This said, femurs are still the ideal rat and mouse bones to use to evaluate the fracture toughness properties in small-animal model studies.4,10 Bending tests are useful to assess the mechanical properties of bones from rodents and other small animals.15 Even though this method of testing is referred to as a ‘bending test,’ the material (in this case, bone) is actually fractured to assess fracture toughness or breaking. For bending tests, long bones are loaded mainly in bending or compression during normal movement of the animals and are subject to both intrinsic and extrinsic large bending forces.4,14 In rodents, locomotion results in alternating tension and compression on the cortex of weight-supporting bones during the gait cycle, with no limit on the magnitude or direction in which these forces can be exerted.8 This makes testing of bending, compression, torsion or any combination of methods potentially applicable. Therefore we chose to conduct 3-point bending testing on rat femurs. Bones were stressed to the point of fracture and the values required were recorded for computer-assisted analysis.In the testing of bone, the fundamental structural properties of greatest importance are stiffness, strength, and toughness.8,10 Measured and calculated values of importance are peak force (ultimate breaking strength), fatigue resistance, stress, strain, break force, and energy to break. We chose to collect and compare peak force (measured data) as well as stress and break force (both calculated data). We made these choices because the most important biomechanical property from a clinical point of view is the peak force, which corresponds to the ability of a patient''s leg to resist high loading before a fracture or irreversible deformation occurs.Strength can be tested as tension, compression, bending, or shear.8,10 Strength as a material parameter is defined as the ultimate stress at which failure occurs, but strength is defined structurally as the ultimate load (or force) when failure of the system occurs.8 In the current study, we tested the strength of rat femurs via 3-point bending. We hypothesized that the 1.5-mm lesion, which involved 39% of the bone circumference, would yield a 20% to 40% decrease in strength. In addition, the femurs with induced lesions showed a consistent decrease in strength, with larger lesions associated with lower peak force on both the right and left sides.  相似文献   

13.
Laboratory mice provide a versatile experimental model for studies of skeletal biomechanics. In order to determine the strength of the mouse skeleton, mechanical testing has been performed on a variety of bones using several procedures. Because of differences in testing methods, the data from previous studies are not comparable. The purpose of this study was to determine which long bone provides the values closest to the published material properties of bone, while also providing reliable and reproducible results. To do this, the femur, humerus, third metatarsal, radius, and tibia of both the low bone mass C57BL/6H (B6) and high bone mass C3H/HeJ (C3H) mice were mechanically tested under three-point bending. The biomechanical tests showed significant differences between the bones and between mouse strains for the five bones tested (p < 0.05). Computational models of the femur, metatarsal, and radius were developed to visualize the types of measurement error inherent in the three-point bending tests. The models demonstrated that measurement error arose from local deformation at the loading point, shear deformation and ring-type deformation of the cylindrical cross-section. Increasing the aspect ratio (bone length/width) improved the measurement of Young's modulus of the bone for both mouse strains (p < 0.01). Bones with the highest aspect ratio and largest cortical thickness to radius ratio were better for bending tests since less measurement error was observed in the computational models. Of the bones tested, the radius was preferred for mechanical testing because of its high aspect ratio, minimal measurement error, and low variability.  相似文献   

14.
The critical role that mechanical stimuli serve in mediating bone repair is recognized but incompletely understood. Further, previous attempts to understand this role have utilized application of externally applied mechanical loads to study the tissue’s response. In this project, we have therefore endeavored to capitalize on bone’s own consistently diverse loading environment to develop a novel model that would enable assessment of the influence of physiologically engendered mechanical stimuli on cortical defect repair. We used an inverse dynamics approach with finite element analysis (FEA) to first quantify normal strain distributions generated in mouse tibia during locomotion. The strain environment of the tibia, as previously reported for other long bones, was found to arise primarily due to bending and was consistent in orientation through the stance phase of gait. Based on these data, we identified three regions within a transverse cross-section of the mid-diaphysis as uniform locations of either peak tension, peak compression, or the neutral axis of bending (i.e. minimal strain magnitude). We then used FEA to quantify the altered strain environment that would be produced by a 0.6 mm diameter cylindrical cortical bone defect at each diaphyseal site and, in an in situ study confirmed our ability to accurately place defects at the desired diaphyseal locations. The resulting model will enable the exploration of cortical bone healing within the context of physiologically engendered mechanical strain.  相似文献   

15.
Elucidation of the mechanism by which the shape of bones is formed is essential for understanding vertebrate development. Bones support the body of vertebrates by withstanding external loads, such as those imposed by gravity and muscle tension. Many studies have reported that bone formation varies in response to external loads. An increased external load induces bone synthesis, whereas a decreased external load induces bone resorption. This relationship led to the hypothesis that bone shape adapts to external load. In fact, by simulating this relationship through topology optimization, the internal trabecular structure of bones can be successfully reproduced, thereby facilitating the study of bone diseases. In contrast, there have been few attempts to simulate the external structure of bones, which determines vertebrate morphology. However, the external shape of bones may be reproduced through topology optimization because cells of the same type form both the internal and external structures of bones. Here, we constructed a three-dimensional topology optimization model to attempt the reproduction of the external shape of teleost vertebrae. In teleosts, the internal structure of the vertebral bodies is invariable, exhibiting an hourglass shape, whereas the lateral structure supporting the internal structure differs among species. Based on the anatomical observations, we applied different external loads to the hourglass-shaped part. The simulations produced a variety of three-dimensional structures, some of which exhibited several structural features similar to those of actual teleost vertebrae. In addition, by adjusting the geometric parameters, such as the width of the hourglass shape, we reproduced the variation in the teleost vertebrae shapes. These results suggest that a simulation using topology optimization can successfully reproduce the external shapes of teleost vertebrae. By applying our topology optimization model to various bones of vertebrates, we can understand how the external shape of bones adapts to external loads.  相似文献   

16.
A calculation method using the finite element technique is presented. Its main objective was to determine strains, stresses and more particularly stiffnesses in any cross section of a tibia, thus enabling the localisation of tibial torsion in vivo. Each tibial cross section was considered to be a non-uniform cross section of a composite beam with arbitrary orientation of fibres. The determination of stresses, strains and stiffnesses within a composite beam cross section has been defined by solving a variational problem. The validation of this method was performed on a tibial diaphysis of which each cross section was assumed to be the cross section of a composite beam made of orthotropic materials with orthotropic axes of any orientation with respect to the principal axis of the bone. The comparison of the results, from our model and that of a three-dimensional one, was performed on each nodal value (strains, stresses) of the meshed cross section as it was impossible to obtain local stiffnesses by experimentation. The good agreement between the results has validated our finite element program. Actually, this method has enabled to treat directly 2D geometric reconstructions from CT scan images with a good accuracy to determine locally the homogenised mechanical characteristics of human tibia in vivo, and particularly to quantify torsional tibial abnormalities of children without approximation of the shape of the cross section and by calculating the real moment of inertia J. The importance of the fibre orientation with regards to the stiffness values has been emphasised. This 2D method has also allowed to reduce CPU time of the 3D modelling and calculation.  相似文献   

17.
In the majority of mammals, the limbs are positioned under the body and play an important role in gravitational support, allowing the transfer of the load and providing stability to the animal. For this reason, an animal's body mass likely has a significant effect on the shape of its limb bones. In the present study, we investigate the influence of body mass variation on the shape of the three long bones of the forelimb in a group of closely‐related species of mammals: the musteloid carnivorans. We use geometric morphometric techniques to quantify forelimb shape; then estimate phylogenetic signal in the shape of each long bone; and, finally, we apply an independent contrasts approach to assess evolutionary associations between forelimb shape and body mass. The results obtained show that body mass evolution is tightly coordinated with the evolution of forelimb shape, although not equally in all elements. In particular, the humeral and radial shapes of heavier species appear better suited for load bearing and load transmission than the ulna. Nevertheless, our results also show that body mass influences only part of forelimb long bone shape and that other factors, such as locomotor ecology, must be considered to fully understand forelimb evolution. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 91–103.  相似文献   

18.
Although stiffness and strength of lower limb bones have been investigated in the past, information is not complete. While the femur has been extensively investigated, little information is available about the strain distribution in the tibia, and the fibula has not been tested in vitro. This study aimed at improving the understanding of the biomechanics of lower limb bones by: (i) measuring the stiffness and strain distributions of the different low limb bones; (ii) assessing the effect of viscoelasticity in whole bones within a physiological range of strain-rates; (iii) assessing the difference in the behaviour in relation to opposite directions of bending and torsion. The structural stiffness and strain distribution of paired femurs, tibias and fibulas from two donors were measured. Each region investigated of each bone was instrumented with 8–16 triaxial strain gauges (over 600 grids in total). Each bone was subjected to 6–12 different loading configurations. Tests were replicated at two different loading speeds covering the physiological range of strain-rates. Viscoelasticity did not have any pronounced effect on the structural stiffness and strain distribution, in the physiological range of loading rates explored in this study. The stiffness and strain distribution varied greatly between bone segments, but also between directions of loading. Different stiffness and strain distributions were observed when opposite directions of torque or opposite directions of bending (in the same plane) were applied. To our knowledge, this study represents the most extensive collection of whole-bone biomechanical properties of lower limb bones.  相似文献   

19.
Infectious disease transmission through the use of human donor allografts can be a catastrophic complication in an otherwise straightforward surgical procedure. The use of bone allograft in reconstructive orthopedic surgeries is increasing, yet severe complications, including death, can result if the transplanted tissues transmit a communicable disease to the tissue recipient. The BioCleanse((R)) tissue sterilization process is a fully automated, low-temperature chemical sterilization process that renders allograft tissue sterile. The purpose of this study was to evaluate the effect of a chemical tissue sterilization process on the mechanical strength of cortical bone allografts prior to implantation. Cylindrical cortical bone specimens were harvested from seven human cadaver donors and treated either by: chemical sterilization alone; chemical sterilization and terminal sterilization by gamma irradiation; chemical sterilization, lyophilization, terminal sterilization by STERRAD and rehydration; or untreated. The specimens were tested to failure in axial compression, diametral compression, shear, or bending. There were no significant differences in ultimate stress, strain, or fracture energy between the chemically sterilized and control groups in any of the testing modes.  相似文献   

20.
We study the effects of freeze–thaw and irradiation on structure–property relations of trabecular bone. We measure the porosity, apparent density, mineral content, trabecular orientation, trabecular thickness, fractal dimension, surface area, and connectivity of trabecular bone using micro-computed tomography (micro-CT) and relate them to Young?s modulus and ultimate strength measured by uniaxial compression testing. The analysis is done on six-month porcine trabecular bone from femoral heads. The effects of freeze–thaw are studied by using bones from three different groups: fresh bone and bones frozen for one and five years. We find that the porosity and apparent density have most dominant influence on the elastic modulus and strength of fresh bone. Also, five years of freezing lowers both Young?s modulus and ultimate strength of trabecular bone. Additionally, the effects of radiation are investigated by comparing Young?s modulus before and after micro-CT exposure. We find that the micro-CT irradiation has a negligible effect on the Young?s modulus of trabecular bone. These findings provide insights on the effects of tissue preservation and imaging on properties of trabecular bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号