首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Chicken ornithine transcarbamylase: purification and some properties   总被引:1,自引:0,他引:1  
Ornithine transcarbamylase [EC 2.1.3.3] has been purified from chick kidney to homogeneity. The molecular weight is 110,000 as determined by gel filtration. Sodium dodecylsulfate polyacrylamide gel electrophoresis of the enzyme showed that the enzyme exists as a trimer of identical subunits of 36,000 daltons like other mammalian species ornithine transcarbamylases. In 0.1 M triethanolamine/HCl, the apparent optimum pH of the purified enzyme was 7.5 in the presence of 5 mM ornithine. The curve shifted toward a more alkaline region with a decrease in ornithine concentration. The specific activity of the purified enzyme as 77 units at pH 7.5. The Km for carbamyl phosphate was 0.11 mM and the Km for ornithine was 1.21 mM. With an increase in pH, a decrease in Km values for ornithine and an increase in the extent of inhibition by ornithine were observed. On using antibody against bovine liver ornithine transcarbamylase, the precipitin lines for the chick and bovine enzymes showed a spur pattern. Even when excess amounts of the antibody were added, the chick enzyme did not lose the activity while the bovine enzyme activity was inhibited completely.  相似文献   

2.
We report experiments describing the isolation and characterization of ornithine transcarbamylase from normal human liver. Our preparative procedure employs initial centrifugation and heat steps, intermediate batch-wise adsorption and desorption from ion exchange resins and column chromatographic elution from hydroxylapatite, and final purification by gel filtration chromatography and glycerol density gradient centrifugation. The enzyme, purified 580-fold in this way, is homogeneous as judged by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human ornithine transcarbamylase has a molecular weight of 114,000 and is a trimer of identical 38,000 molecular weight subunits. It focuses at pH 6.8 as a single band on polyacrylamide gel, has a COOH-terminal phenylalanine, an NH2-terminal glycine, an apparent Km for L-ornithine of 0.4 mM and for carbamyl phosphate of 0.16 mM, and a pH optimum of 7.7. The enzyme is quite stable over a temperature range from -50 degrees to +60 degrees C and over the pH range from 5.8 to 8.2. The quaternary structure and amino acid composition of the human enzyme are very similar to those of its bovine homologue.  相似文献   

3.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

4.
Cobyrinic acid a,c-diamide synthase, which catalyzes the conversion of cobyrinic acid to cobyrinic acid a,c-diamide via the intermediate formation of cobyrinic acid c-monoamide, was purified 155-fold to homogeneity from extracts of a recombinant strain of Pseudomonas denitrificans by high-performance liquid chromatography. The enzyme has an apparent molecular weight of 86,000 and consists of two identical subunits of Mr 45,000, as estimated by gel electrophoresis under denaturing conditions. Stepwise Edman degradation provided the N-terminal sequence of the first 15 amino acids. Glutamine was shown to be the preferred amino group donor (Km = 20.3 microM), but it could be replaced by ammonia (Km = 12 mM). The reaction was ATP dependent and exhibited a broad optimum pH around 7.3. Km values for (CN,aq)cobyrinic acid, (aq)2cobyrinic acid, and (CN,aq)cobyrinic acid c-monoamide were 160, greater than or equal to 250, and 71 microM, respectively. Hydrogenobyrinic acid and hydrogenobyrinic acid c-monoamide were shown to be much better substrates, with Km values of 0.41 and 0.21 microM, respectively.  相似文献   

5.
Halobacterium halobium (salinarium) is able to grow fermentatively via the arginine deiminase pathway, which is mediated by three enzymes and one membrane-bound arginine-ornithine antiporter. One of the enzymes, catabolic ornithine transcarbamylase (cOTCase), was purified from fermentatively grown cultures by gel filtration and ammonium sulfate-mediated hydrophobic chromatography. It consists of a single type of subunit with an apparent molecular mass of 41 kDa. As is common for proteins of halophilic Archaea, the cOTCase is unstable below 1 M salt. In contrast to the cOTCase from Pseudomonas aeruginosa, the halophilic enzyme exhibits Michaelis-Menten kinetics with both carbamylphosphate and ornithine as substrates with Km values of 0.4 and 8 mM, respectively. The N-terminal sequences of the protein and four peptides were determined, comprising about 30% of the polypeptide. The sequence information was used to clone and sequence the corresponding gene, argB. It codes for a polypeptide of 295 amino acids with a calculated molecular mass of 32 kDa and an amino acid composition which is typical of halophilic proteins. The native molecular mass was determined to be 200 kDa, and therefore the cOTCase is a hexamer of identical subunits. The deduced protein sequence was compared to the cOTCase of P. aeruginosa and 14 anabolic OTCases, and a phylogenetic tree was constructed. The halobacterial cOTCase is more distantly related to the cOTCase than to the anabolic OTCase of P. aeruginosa. It is found in a group with the anabolic OTCases of Bacillus subtilis, P. aeruginosa, and Mycobacterium bovis.  相似文献   

6.
When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (Km = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for alpha-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.  相似文献   

7.
A single injection of D-galactosamine into rats caused acute liver cell injury, and the activity of ornithine transcarbamylase in the serum increased about 600-fold as compared with that in the normal serum. Some properties of the serum enzyme from galactosamine-treated rats have been studied together with those of the mitochondrial enzyme in liver. Both the enzyme activities gave similar pH profiles, showing an optimum of pH 8.5. Apparent Km values of the serum enzyme for ornithine under the standard conditions at pH 7.4 and pH 7.7 were 1.59 mM and 0.94 mM, respectively, and those of the mitochondrial enzyme were 1.69 mM and 0.97 mM, respectively. The Km value of the serum enzyme for carbamyl phosphate was 0.34 mM, which is similar to that of the mitochondrial enzyme. The mitochondrial enzyme was purified 78-fold to homogeneity with a 45% yield by ammonium sulfate fractionation, heat treatment, 2nd ammonium sulfate fractionation, and phenyl-Sepharose CL-4B and CM-Sephadex C-50 column chromatographies. The specific activity of the purified enzyme was 282 mumol of citrulline formed per mg of protein per min at 37 degrees C. The mitochondrial and serum enzymes have a molecular weight of 115,000 as determined by Sephacryl S-300 gel filtration. Antibody specific for the mitochondrial enzyme was raised, and the immunological properties of the serum enzyme were examined. In immunoinhibition experiments, a decrease of the serum enzyme activity as well as the mitochondrial enzyme was observed on increasing the amount of the antibody.  相似文献   

8.
A cold-labile glutamate dehydrogenase (GDH, EC 1.4.1.3) has been purified to homogeneity from the crude extracts of Azospirillum brasilense. The purified enzyme shows a dual coenzyme specificity, and both the NADPH and NADH-dependent activities are equally cold-sensitive. The enzyme is highly specific for the substrates 2-oxoglutarate and glutamate. Kinetic studies with GDH indicate that the enzyme is primarily designed to catalyse the reductive amination of 2-oxoglutarate. The NADP+-linked activity of GDH showed Km values 2.5 X 10(-4) M and 1.0 X 10(-2) M for 2-oxoglutarate and glutamate respectively. NAD+-linked activity of GDH could be demonstrated only for the amination of 2-oxoglutarate but not for the deamination of glutamate. The Lineweaver-Burk plot with ammonia as substrate for NADPH-dependent activity shows a biphasic curve, indicating two apparent Km values (0.38 mM and 100 mM) for ammonia; the same plot for NADH-dependent activity shows only one apparent Km value (66 mM) for ammonia. The NADPH-dependent activity shows an optimum pH from 8.5 to 8.6 in Tris/HCl buffer, whereas in potassium phosphate buffer the activity shows a plateau from pH 8.4 to 10.0. At high pH (greater than 9.5) amino acids in general strongly inhibit the reductive amination reaction by their competition with 2-oxoglutarate for the binding site on GDH. The native enzyme has a Mr = 285000 +/- 20000 and appears to be composed of six identical subunits of Mr = 48000 +/- 2000. The GDH level in A. brasilense is strongly regulated by the nitrogen source in the growth medium.  相似文献   

9.
Acinetobacter calcoaceticus ATCC 23055 produces a large amount of 1,3-diaminopropane under normal growth conditions. The enzyme responsible, L-2,4-diaminobutyrate (DABA) decarboxylase (EC 4.1.1.-), was purified to electrophoretic homogeneity from this bacterium. The native enzyme had an M(r) of approximately 108,000, with a pI of 5.0, and was a dimer composed of identical or nearly identical subunits with apparent M(r) 53,000. The enzyme showed hyperbolic kinetics with a Km of 1.59 mM for DABA and 14.6 microM for pyridoxal 5'-phosphate as a coenzyme. The pH optimum was in the range 8.5-8.75, and Ca2+ gave a much higher enzyme activity than Mg2+ as a cationic cofactor. N-gamma-Acetyl-DABA, 2,3-diaminopropionic acid, ornithine and lysine were inert as substrates. The enzyme was different in subunit structure, N-terminal amino acid sequence and immunoreactivity from the DABA decarboxylase of Vibrio alginolyticus previously described.  相似文献   

10.
A new enzyme which catalyzes the transamination of L-norleucine (2-aminohexanoic acid) and L-leucine with 2-oxoglutarate was purified to homogeneity from cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 100,000. The transaminase behaved as a dimer which consists of two subunits identical in molecular mass (Mr 51,000). The enzyme has a maximum activity in the pH range of 8.0-8.5 and at 55 degrees C. 2-Oxoglutarate, and to a lesser extent pyridoxal 5'-phosphate, were effective protecting agents against increasing temperature. The enzyme exhibits absorption maximum at 330 nm and 410 nm. L-Norleucine, and L-leucine to a lesser extent, are the best amino donors with 2-oxoglutarate as amino acceptor. The Km values for L-norleucine, L-leucine and 2-oxoglutarate determined from the Lineweaver-Burk plot were 1.8 mM, 6.6 mM and 2.0 mM respectively. A ping-pong bi-bi mechanism of inhibition with alternative substrates is found when the enzyme is in the presence of both L-norleucine and L-leucine. The inhibitory effect of various amino acid analogs on the transamination reaction between L-norleucine and 2-oxoglutarate was studied and Ki values were determined.  相似文献   

11.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38-39 kDa, as judged by SDS-PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5+/-4.5 microM and uronic acids, such as D-galacturonic acid (Km=3.79+/-0.5 mM) and D-glucuronic acid (Km=4.67+/-0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP(+). The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H(2)O(2), suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

12.
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.  相似文献   

13.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

14.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

15.
Sucrose-6-phosphate hydrolase from Lactococcus lactis subsp. lactis K1-23 (formerly Streptococcus lactis K1-23) has been purified 600-fold to electrophoretic homogeneity. Purification of the enzyme was achieved by DEAE-Sephacel, phosphocellulose P-11, and gel exclusion (Ultrogel AcA 54) chromatography. The purified enzyme (specific activity 31 units/mg) catalyzed the hydrolysis of both 6-O-phosphoryl-alpha-D-glucopyranosyl-1,2-beta-D-fructofuranoside (sucrose 6-phosphate) and sucrose (Km = 0.1 and 100 mM, respectively). Ultracentrifugal analysis of sucrose-6-phosphate hydrolase indicated an Mr = 52,200. The purified enzyme migrated as a single protein during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000). However, four distinct polypeptides were detected by analytical electrofocusing, and all four species hydrolyzed sucrose and sucrose 6-phosphate. The amino acid composition of sucrose-6-phosphate hydrolase, and the sequence of the first 12 amino acids from the NH2 terminus, have been determined. Hybridization studies with oligonucleotide probes show that the genes for sucrose-6-phosphate hydrolase (scrB), Enzyme IIScr of the phosphoenolypyruvate-dependent sucrose:phosphotransferase system (scrA), and N5-(carboxyethyl)ornithine synthase (ceo) are encoded by the same approximately 20-kilobase EcoRI fragment. This fragment is part of a large transposon Tn5306 that also encodes the nisin precursor gene, spaN, and IS904. In L. lactis ATCC 11454, spaN, IS904, scrA, and scrB (but not ceo) are encoded on a related transposon, Tn5307.  相似文献   

16.
A novel type of arylsulfotransferase was purified from Eubacterium A-44, one of the predominant bacteria of human intestine. The enzyme (Mr 315 000) was composed of four identical subunits (Mr 80 000) whose N-terminal amino acids were arginine. pI and optimal pH of the enzyme were 3.9 and 8-9, respectively. The apparent Km for p-nitrophenylsulfate using tyramine as an acceptor substrate and that for tyramine using p-nitrophenylsulfate as a donor substrate were determined to be 0.104 mM and 3.5 mM, respectively. The reaction mechanism of the enzyme was proposed as follows: a donor substrate, p-nitrophenyl [35S]sulfate, combines a histidine residue of the enzyme active site with concomitant release of a phenolic compound, p-nitrophenol. The sulfate group of the histidine residue transfers to a tyrosine group, and then to an acceptor with the binding of another donor to the histidine residue.  相似文献   

17.
A dipeptidase with prolinase activity from Lactobacillus helveticus CNRZ32, which was designated PepR, was purified to gel electrophoretic homogeneity and characterized. The NH2-terminal amino acid sequence of the purified protein had 96% identity to the deduced NH2-terminal amino acid sequence of the pepR gene, which was previously designated pepPN, from L. helveticus CNRZ32. The purified enzyme hydrolyzed Pro-Met, Thr-Leu, and Ser-Phe as well as dipeptides containing neutral, nonpolar amino acid residues at the amino terminus. Purified PepR was determined to have a molecular mass of 125 kDa with subunits of 33 kDa. The isoelectric point of the enzyme was determined to be 4.5. The optimal reaction conditions, as determined with Pro-Leu as substrate, were pH 6.0 to 6.5 and 45 to 50 degrees C. The purified PepR had a Km of 4.9 to 5.2 mM and a Vmax of 260 to 270 mumol of protein per min/mg at pH 6.5 and 37 degrees C. The activity of purified PepR was inhibited by Zn2+ but not by other cations or cysteine, serine, aspartic, or metal-containing protease inhibitors or reducing agents. Results obtained by site-directed mutagenesis indicated that PepR is a serine-dependent protease. Gene replacement was employed to construct a PepR-deficient derivative of CNRZ32. This mutant did not differ from the wild-type strain in its ability to acidify milk. However, the PepR-deficient construct was determined to have reduced dipeptidase activity compared to the wild-type strain with all dipeptide substrates examined.  相似文献   

18.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

19.
Rat kidney L-alanine:4,5-dioxovalerate transaminase (EC 2.6.1.43), which may be involved in the formation of aminolevulinic acid in mammalian cells, was purified 82-fold to apparent homogeneity with a 19% yield. Molecular weight of the enzyme, as estimated by gel filtration, was found to be 225 000. In polyacrylamide gel electrophoresis under denaturing conditions, the enzyme moved as a single band corresponding to an Mr of 37 000, suggesting that the enzyme is composed of six identical subunits. The Km values of L-alanine and 4,5-dioxovalerate are 2.9 and 0.25 mM, respectively. The enzyme had an optimum activity at pH 6.6 and was most active at 65 degrees C. Among some amino acids tested, L-alanine proved to be the most efficient amino donor, and the enzyme was also stereospecific for the L-isomer. The effect of intermediate metabolites of heme biosynthesis, for example, delta-aminolevulinic acid, protoporphyrin, hemin and bilirubin has been studied on purified L-alanine:4,5-dioxovalerate transaminase. Amongst these metabolites, hemin and protoporphyrin were found to be effective inhibitors.  相似文献   

20.
Two NADPH-dependent oxidoreductases catalyzing the enantioselective reduction of 3-oxo esters to (S)- and (R)-3-hydroxy acid esters, [hereafter called (S)- and (R)-enzymes] have been purified 121- and 332-fold, respectively, from cell extracts of Saccharomyces cerevisiae by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, Sephadex G-150 filtration, Sepharose 6B filtration and hydroxyapatite chromatography. The relative molecular mass Mr, of the (S)-enzyme was estimated to be 48,000-50,000 on Sephadex G-150 column chromatography and 48,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.9 and reduced 3-oxo esters, 4-oxo and 5-oxo acids and esters enantioselectively to (S)- hydroxy compounds in the presence of NADPH. The Km values for ethyl 3-oxobutyrate, ethyl 3-oxohexanoate, 4-oxopentanoic and 5-oxohexanoic acid were determined as 0.9 mM, 5.3 mM, 17.1 mM and 13.1 mM, respectively. The Mr of the (R)-enzyme, estimated by means of column chromatography on Sepharose 6B, was 800,000. Under dissociating conditions of SDS/polyacrylamide gel electrophoresis the enzyme resolved into subunits of Mr 200,000 and 210,000, respectively. The enzyme is optimally active at pH 6.1, catalyzing specifically the reduction of 3-oxo esters to (R)-hydroxy esters, using NADPH for coenzyme. Km values for ethyl 3-oxobutyrate and ethyl 3-oxohexanoate were determined as 17.0 mM and 2.0 mM, respectively. Investigations with purified fatty acid synthase of baker's yeast revealed that the (R)-enzyme was identical with a subunit of this multifunctional complex; intact fatty acid synthase (Mr 2.4 X 10(6)) showed no activity in catalyzing the reduction of 3-oxo esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号