首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

3.
To examine the regulatory mechanisms of proliferation and maturation in neutrophilic lineage cells, we have tried to sort dimethyl sulfoxide (Me(2)SO)-treated HL-60 cells into transferrin receptor (Trf-R) positive (Trf-R(+)) and negative (Trf-R(-)) cells. Differentiated Trf-R(-) cells expressed more formyl-Met-Leu-Phe receptor (fMLP-receptor) and ability of O-(2) genaration, as markers of differentiation, than Trf-R(+) cells, and Trf-R(-) cell differentiation was markedly accelerated by the incubation with granulocyte colony stimulating factor (G-CSF). On the other hand, Trf-R(+) cells had a tendency to proliferate rather than differentiate, and proliferation was enhanced by G-CSF. These results indicate that Trf-R expression coincides with the commitment to proliferate or differentiate of HL-60 cells, and G-CSF accelerates these commitments. G-CSF-induced tyrosine phosphorylation of STAT 3 in Trf-R(-) cells much more than in Trf-R(+) cells. Protein 70 S6 kinase expression was higher in Trf-R(+) cells than in Trf-R(-) cells. Furthermore, p70 S6 kinase was hyperphosphorylated by G-CSF in Trf-R(+) cells, but not in Trf-R(-) cells. Rapamycin, an inhibitor of p70 S6 kinase activity, inhibited G-CSF-dependent proliferation of Trf-R(+) cells and increased fMLP-R expression on these cells. These results suggest that commitment to proliferation and differentiation in Me(2)SO-treated HL-60 cells is preprogrammed and correlated with Trf-R expression, and G-CSF potentiates the cellular commitment. STAT 3 may promote differentiation of Me(2)SO-treated HL-60 cells into neutrophils, while p70 S6 kinase may promote proliferation and negatively regulate neutrophilic differentiation.  相似文献   

4.
Changes in the mechanisms of folate incorporation were studied in cells treated with low concentrations of methotrexate in order to evaluate their contribution to the development of resistance to antifolate drugs. The uptake of methotrexate via reduced-folate system, the membrane-associated high-affinity folate binding capacity and the activity, levels and affinity for methotrexate of dihydrofolate reductase were measured in L5178 murine leukemic lymphoblasts and in a subline, MTX/R16, 16 times more resistant to methotrexate which was isolated after a short exposure to the antifolate. Various simultaneous changes were characterized in MTX/R16 cells which co-participated in the development of resistance: a decreased affinity of the carrier for methotrexate uptake via the reduced-folate system of entry, the increase of dihydrofolate reductase activity and levels and a two-fold increased expression of a membrane-associated high-affinity folate-binding protein (mFBP). The increase of the mFBP expression, besides ensuring the growth of resistant cells by its contribution to the reduced folate intake, also participates in the methotrexate resistance by the internalization of folate cofactor which would compete with methotrexate hindering the effective inhibition of dihydrofolate reductase by the antifolate.  相似文献   

5.
Two biochemically distinct systems, the high affinity folate receptor and the lower affinity reduced-folate carrier, have each been implicated in mediating the transport of folates and antifolates into cells. Previous studies from our laboratory have shown that methotrexate accumulation into wild type (WT) ZR-75-1 human breast cancer cells involves a system with characteristics of the reduced-folate carrier, that this system is deficient in methotrexate resistant (MTXR) ZR-75-1 cells in which methotrexate transport is undetectable and that neither breast cancer cell line expresses folate receptors. In this report we examined the possible interaction of the reduced-folate carrier with folate receptors by stably transfecting both WT ZR-75-1 and MTXR ZR-75-1 cells with an expression vector containing a folate receptor cDNA. Clones of stably transfected MTXR ZR-75-1 and WT ZR-75-1 cells expressing comparable levels of folate receptors were studied and compared to the nontransfected cell lines. Although nontransfected WT and MTXR ZR-75-1 cell lines require concentrations > or = 100 nM folic acid for growth, the expression of folate receptors in transfected WT and MTXR ZR-75-1 cells permitted the growth of both cell lines in low concentrations (1 nM) of folic acid. While the defect in the reduced-folate carrier system in MTXR ZR-75-1 cells inhibits their growth in medium containing low concentrations of folinic acid (< or = 1 microM), MTXR ZR-75-1 cells expressing folate receptors display uninhibited growth in 1 nM folinic acid. The accumulation of folic acid, folinic acid, and methotrexate is enhanced in folate receptor-transfected WT ZR-75-1 cells and MTXR ZR-75-1 cells. Furthermore, the accumulation of folates and antifolate was similar in both transfected WT and MTXR ZR-75-1 cell lines that expressed folate receptors. This suggests that alterations in the reduced-folate carrier do not affect folate receptor function. We also examined the effect of folate receptor expression on the sensitivity of WT and MTXR ZR-75-1 cells to methotrexate and to the lipophillic antifolate trimetrexate. Increased folate receptor expression decreased the sensitivity of WT ZR-75-1 cells toward the antifolate trimetrexate, presumably through increased uptake of reduced folates. Although the expression of the folate receptor enhanced the growth of both cell lines in low folate concentrations, it did not affect the sensitivity of either WT or MTXR ZR-75-1 cells to methotrexate.  相似文献   

6.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
As HL-60 cells matured along the granulocytic pathway, phorbol diester-induced superoxide anion production was compared to phorbol diester-induced protein phosphorylation using an in vitro phosphorylation technique. Maturation was induced by 0, 2, 4, or 6 days incubation with dimethyl sulfoxide (Me2SO). In 0 day Me2SO HL-60 cells, phorbol 12-myristate 13-acetate induced phosphorylation of protein pp29 (Mr = 28,600) and to a lesser extent protein pp76 (Mr = 76,300). With increased time of Me2SO incubation, phorbol 12-myristate 13-acetate induced phosphorylation of pp212 (Mr = 211,800), pp134 (Mr = 134,200), and pp76, whereas the phosphorylation of pp29 did not change appreciably. In close agreement with this increase in protein phosphorylation was the observed increase in phorbol diester-induced superoxide anion formation. Morphological characterization of cells during Me2SO-induced differentiation reveals that these increases in phorbol diester responses are probably attributable to the proportional rise in metamyelocytes, band, and segmented neutrophils. A variety of phorbol diesters increased superoxide anion generation in HL-60 cells differentiated into granulocyte-like cells by 6-day incubation with Me2SO. The structure-activity relationship of these phorbol diester derivatives for protein phosphorylation was strongly correlated to their ability to increase superoxide anion generation. Thus, we propose that phorbol diester-induced phosphorylation of pp212, pp134, and pp76, but not pp29 may play a role in mediating the functional response of phorbol diester-induced superoxide anion generation in HL-60 cells differentiated into mature granulocyte-like cells.  相似文献   

9.
The methotrexate (MTX) and folate transport properties of five MTX-resistant lines of Leishmania major have been examined. These resistant lines all show a decreased Vmax for MTX influx, with no change in apparent affinity (Kt). The Vmax of folate influx is also proportionately decreased without alteration in Kt, supporting our proposal that there is a single carrier mediating influx of both ligands. Amplifications of two regions of DNA, the R region (encoding dihydrofolate reductase-thymidylate synthase) and the H region (Beverley, S.M., Coderre, J.A., Santi, D.V., and Schimke, R.T. (1984) Cell 38, 431-439), were also observed. In a given line, the amplifications occurred singly, in combination, or not at all. No other regions of amplification were detected. The phenotype of reduced MTX transport was moderately stable in the highly resistant R1000 line, being retained for more than 200 generations in the absence of MTX in vitro and during one passage through an infected mouse; in contrast, R- and H-amplified DNA were less stable. The lack of correlation of R and H amplification with reduced MTX transport suggests that alterations in transport are not causally mediated by gene amplification in Leishmania, but are a separate mode of MTX resistance. The onset of decreased MTX transport was also examined; wild-type Leishmania developed a reduced Vmax of MTX influx within 24 h following exposure to 1 microM MTX, which is extremely unstable in the absence of drug pressure. A comparable decrease in the Vmax of influx is seen in cells exposed to MTX in media in which cytotoxicity is eliminated. As the folate/MTX transporter is regulated by exogenous folate, these data suggest that the initial rapid decrease in MTX transport may be a cellular regulatory response, in contrast to that found within the R1000 line which resembles a more stable genetic mutation.  相似文献   

10.
Promastigotes of the protozoan parasite Leishmania major exhibit high affinity uptake of folate (Kt = 0.7 microM) and methotrexate (MTX) (Kt = 1.8 microM) which is saturable and sensitive to metabolic poisons. Influx of folate and MTX is competitively inhibited by 5-formyltetrahydrofolate and p-aminobenzoic acid-glutamate, but not by 4-deoxy-4-amino-10-methylpteroate, biopterin, or pteroate. A single carrier is inferred for both folate and MTX transport, as the Ki of each inhibitor for both folate and MTX influx is the same, and the apparent affinities (Kt) of the substrates folate and MTX are identical to their respective Ki values for inhibition of MTX and folate uptake. Folate influx is specifically regulated according to cellular growth phase, as stationary phase cells exhibit 7% of the Vmax of log phase cells, while energy-dependent glucose uptake is only moderately reduced in stationary phase. Folate influx is also regulated by external folate levels, as cells grown in 5 microM folate exhibit 30% of the Vmax of cells grown in folate-depleted medium. Comparison of bacterial, mammalian, and Leishmania folate transport activities indicates considerable diversity in both biochemical and regulatory properties, and suggests the possibility that selective inhibition or manipulation of folate transport may be exploited in parasite chemotherapy.  相似文献   

11.
We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups.  相似文献   

12.
During treatment of HL-60 myeloid leukemia cells in culture with polar solvents or retinoic acid at a concentration inducing terminal maturation in 90-95% of the cells, there is a rapid decline (within 2 h) in the Vmax for influx of the folate analogue, [3H]methotrexate. Following 24 h of exposure to these agents, there is no effect on growth, but influx Vmax is reduced by 70%. After 7 days of exposure, influx Vmax is reduced 90-95%. A similar time course was seen for the reduction in intracellular levels of dihydrofolate reductase, a marker of cellular proliferation. Both the extent of terminal maturation (as determined by the extent of nitro blue tetrazolium reduction) and decrease in influx showed the same dependence on the concentration of inducer. In contrast to the effect seen on influx Vmax, both influx Km and mediated efflux of [3H]methotrexate remained unchanged in HL-60 cells exposed to inducers of maturation. Finally, evidence is presented for the coupling of this alteration on [3H]methotrexate influx with commitment of HL-60 cells to terminal maturation. This evidence shows that the effect on folate analogue influx precedes commitment and documents the irreversible nature of the reduction in influx once the majority of the cells exposed to inducer were committed to the process of maturation. The possible relevance of these results to the process of neoplastic transformation is discussed.  相似文献   

13.
Multimeric structure of the tumor necrosis factor receptor of HeLa cells   总被引:5,自引:0,他引:5  
The tumor necrosis factor (TNF) receptor of HeLa cells was solubilized in Triton X-100 and characterized by gel filtration, affinity labeling, and ligand blotting studies. Receptors solubilized with Triton X-100 eluted in gel filtration as a major peak of Mr = 330,000 and retained high affinity binding (KD = 0.25 nM). Affinity labeling of soluble receptor/125I-TNF complexes using the reversible, bifunctional bis[2-(succinimidooxycarbonyl-oxy)ethyl] sulfone resulted in the formation of cross-linked species of Mr = 310,000, 150,000-175,000, 95,000, and 75,000. The formation of these complexes was competitively inhibited by unlabeled TNF. Partial reversal of cross-linking in these complexes and their analysis by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved 125I-TNF dimers cleaved from the 95,000 band and 125I-TNF monomer cleaved from the 75,000 band, providing evidence for a Mr approximately 60,000 subunit. In addition, the 95,000 and 75,000 bands were resolved as components of larger complexes (Mr = 150,000-175,000), which presumably contain two receptor subunits. The Mr 95,000 and 75,000 bands were also released from the Mr 310,000 complex by reduction with dithiothreitol, suggesting a role for disulfide bond stabilization. To investigate the association of the putative receptor subunits, Triton X-100 extracts from HeLa membranes were fractionated by SDS-PAGE without reduction and transferred electrophoretically to nylon membranes for TNF binding assays. Only two bands of Mr = 60,000 and 70,000 specifically bound TNF, and higher Mr binding activity was not observed. These results indicate that TNF receptors in HeLa cells are high molecular weight complexes containing Mr = 60,000 and 70,000 subunits each capable of binding TNF and that the complexes are primarily stabilized by non-covalent, hydrophobic interactions.  相似文献   

14.
The interaction of hepatocytes with the basement membrane glycoprotein laminin was studied using synthetic peptides derived from laminin sequences. Rat hepatocytes bind to laminin and three different sites within the A and B1 chains of laminin were identified. Active laminin peptides include the PA22-2 peptide (close to the carboxyl end of the long arm in the A chain), the RGD-containing peptide, PA21 (in the short arm of the A chain) and the pentapeptide YIGSR (in the short arm of the B1 chain). PA22-2 was the most potent peptide, whereas the other two peptides had somewhat lower activity. Furthermore, hepatocyte attachment to laminin was inhibited by the three peptides, with PA22-2 being the most active. Various proteins from isolated membranes of cell-surface iodinated hepatocytes bound to a laminin affinity column including three immunologically related binding proteins : Mr = 67,000, 45,000, and 32,000. Several proteins--Mr = 80,000, 55,000, and 38,000-36,000--with a lower affinity for laminin were also identified. Affinity chromatography on peptide columns revealed that the PA22-2 peptide specifically bound the Mr = 80,000, 67,000, 45,000, and 32,000 proteins, the PA21 peptide bound the Mr = 45,000 and 38,000-36,000 proteins and the YIGSR peptide column bound the 38,000-36,000 protein. Antisera to a bacterial fusion protein of the 32-kD laminin-binding protein (LBP-32) reacted strongly with the three laminin-binding proteins, Mr = 67,000, 45,000, and 32,000, showing that they are immunologically related. Immunoperoxidase microscopy studies confirmed that these proteins are present within the plasma membrane of the hepatocyte. The antisera inhibited the adhesion of hepatocytes to hepatocytes to laminin by 30%, supporting the finding that these receptors and others mediate the attachment of hepatocytes to several regions of laminin.  相似文献   

15.
Itoh T  Ono K  Koido KI  Li YH  Yamada H 《Chirality》2001,13(3):164-169
Stereoselectivity of the folate transporter was examined using rabbit intestinal brush border membrane vesicles (BBMV). Methotrexate (MTX) and the antipode (D-amethopterin) were used as model substrates of the transporter. Folic acid (FA) and MTX were actively taken up into BBMV in the presence of an H+ gradient. Initial uptake of FA and MTX was concentration-dependent with Km values of 1.5 and 1.6 microM for FA and MTX, respectively. FA and MTX mutually inhibited uptake in a competitive manner, with Ki values being similar to the corresponding Km values, demonstrating that FA and MTX share the folate transporter. D-Amethopterin also inhibited FA uptake competitively, with a Ki value approximately 60-fold greater than that of MTX, showing that the affinity of the D-isomer (D-amethopterin) to the folate transporter is much less than that of the L-isomer (MTX). The extent of stereoselectivity observed in the present study is consistent with the previously reported differences in plasma concentration between amethopterin enantiomers following oral administration in humans.  相似文献   

16.
We have studied the activity of the Na+/H+ exchanger during dimethyl sulfoxide (Me2SO)-induced maturation of the human promyelocytic leukemia cell line HL-60. 22Na uptake was measured in cells preloaded with Li+ or NH+4 in order to specifically activate the Na+/H+ exchanger. Measurement of the rate of uptake as a function of sodium concentration revealed a decrease in Km for Na+ from 38 +/- 3 to 13 +/- 1 mM after 20-24-h treatment with Me2SO. Vmax was not changed significantly. Inhibition of the exchanger by dimethylamiloride (DMA) and by acidic external pH was similar in treated and untreated cells. Thus it is unlikely that the Na+ binding site is altered. A change, however, was observed in the regulation of the exchanger by intracellular pH. In control cells maximal stimulation of the Na+ uptake was observed when the intracellular pH decreased from 7.25 to 7.00. In Me2SO-treated cells the 22Na uptake at intracellular pH 7.00 was greater than in the control and continued to increase as the intracellular pH was adjusted below 7.00, down to 6.75. This suggests that the Na+/H+ exchanger in Me2SO-treated cells is altered structurally in its allosteric H+ binding site. The appearance of this modified exchanger preceded by a period of days the appearance of a functional property characteristic of mature granulocytes, that is, the capability to produce superoxide, suggesting that the modified exchanger may be required for the expression of the mature phenotype. A second modification, a decrease in the Vmax of the 22Na uptake, occurred after 2 days treatment with Me2SO. This reduction may reflect a decrease in the number of functioning exchangers per cell.  相似文献   

17.
Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G-green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX-resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate-rich medium, to increased folate uptake. MTX-resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX.  相似文献   

18.
A photoreactive derivative of a sulfur-free bovine parathyroid hormone (PTH) analogue, [Nle8,N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH), was purified from the products of the reaction of [Nle8,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NlePTH) with 4-fluoro-3-nitro-phenylazide and was used to identify binding components of the PTH receptor in clonal rat osteosarcoma cells (ROS 17/2.8). The purified analogue, NAP-NlePTH, is a fully active agonist in three different ROS 17/2.8 cell bioassays: 1) specific binding to saturable PTH receptors; 2) stimulation of cyclic AMP accumulation; and 3) inhibition of cellular alkaline phosphatase activity; this analogue gave dose response curves parallel to and 25-33% as potent as its parent molecule, NlePTH. Radioiodinated NAP-NlePTH (125I-labeled NAP-NlePTH) retained maximal receptor-binding potency. Radioligand saturation studies in intact cells showed that the Kd of PTH receptors for the photoligand was slightly less than that for 125I-labeled NlePTH (2.8 and 0.8 nM, respectively), but that the Bmax was essentially identical for both radioligands (8 fmol/10(5) cells). Photoaffinity labeling of ROS 17/2.8 cells revealed several 125I-labeled macromolecular components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One predominant 125I-labeled band, having an apparent Mr of 80,000 daltons (including Mr = 4,347 ligand; hereafter referred to as the Mr = 80,000 protein), was consistently demonstrated in both reducing and nonreducing conditions. Its labeling was completely inhibited by coincubation with NlePTH (10 nM) at 26-fold molar excess to the photoligand, but not by biologically inactive PTH fragments or unrelated hormone. Labeling of several other macromolecular components persisted in the presence of NlePTH (1 microM). Only the labeling of the Mr = 80,000 protein showed saturation kinetics for photoaffinity labeling; the dose of 125I-labeled NAP-NlePTH (0.8 nM) to half-saturate labeling of the Mr = 80,000 protein was close to the Kd (2.8 nM) of specific binding of the photoligand to receptors in intact ROS 17/2.8 cells. Pretreatment of the cells with NlePTH and dexamethasone led to the predicted proportional decrease or increase, respectively, in labeling of the Mr = 80,000 protein. Our data, using a highly purified photoactive derivative of PTH, having carefully defined chemical and biological properties, show a plasma membrane component of Mr = 80,000 in ROS 17/2.8 cells that possesses the affinity, binding capacity, and physiological characteristics of the PTH receptor.  相似文献   

19.
The cross-linking agent ethylene glycol-bis(succinimidyl succinate) was used to covalently link 125I-labeled gastrin releasing peptide (125I-GRP) to an Mr 75,000-85,000 surface protein in Swiss 3T3 cells that displays many characteristics of a specific receptor for peptides of the bombesin family. This protein was not present in other cell lines which do not exhibit receptors for bombesin-like peptides. Unlabeled GRP competed for affinity labeling of the Mr 75,000-85,000 protein in a concentration-dependent manner, and other bombesin-related peptides also inhibited the cross-linking of 125I-GRP to this component. In contrast, high concentrations of a variety of other peptide hormones and mitogens had no effect. Affinity labeling of the Mr 75,000-85,000 protein was dependent on the concentration of 125I-GRP and exhibited saturability. 125I-GRP affinity labeling of this protein was also demonstrated by two-dimensional gel electrophoresis. These studies suggest that an Mr 75,000-85,000 surface protein with an isoelectric point of 6.0 to 6.5 is a major component of the receptor for peptides of the bombesin family in Swiss 3T3 cells.  相似文献   

20.
Monoclonal antibodies which interact with the mammalian Na+/D-glucose cotransporter and bind to Mr 75,000 and Mr 47,000 polypeptide components of this transporter have been described (Koepsell, H., Korn, K., Raszeja-Specht, A., Bernotat-Danielowski, S. and Ollig, D. (1988) J. Biol. Chem., 263, 18419-18429). The interaction of these antibodies with plasma membranes from Zea mays L. coleoptiles containing an H+/D-glucose cotransporter was studied. Four monoclonal antibodies cross-reacted with Mr 75,000 and Mr 33,000 polypeptides. One of these antibodies, which inhibits Na+/D-glucose cotransport in the kidney and stimulates Na+/D-glucose cotransport in intestine, stimulates electrogenic uptake of 3-O-methyl-D-[14C]glucose in plant membrane vesicles. The data indicate common epitopes in the mammalian Na+/D-glucose cotransporter and the H+/D-glucose cotransporter of plants and suggest that both transporters contain an Mr 75000 polypeptide component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号