首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wang SM  Lin YH  Huang AH 《Plant physiology》1984,76(3):837-839
The maize lines, Illinois High Oil, Illinois Low Oil, and their F1 generation contained about 18%, 0.5%, and 10%, respectively, of kernel lipids, which were present mostly in the scutella. We explored to see if the activities of gluconeogenic enzymes which appeared in postgerminative growth were proportional to the lipid content in each maize line. This proportionality was found to be valid in lipase, but the two glyoxysomal enzymes, catalase and isocitrate lyase, were the same in the three maize lines irrespective of the lipid content. The results suggest a difference in the genetic control of the gluconeogenic enzymes and a co-selection for high lipid content and high lipase activity through breeding.  相似文献   

2.
Changes in levels of isocitrate lyase, malate synthase, and catalase have been investigated during germination of flax (Linum usitatissimum L.) in the presence and absence of itaconate. Germination was accompanied by a rapid increase in these enzymes during the first 3 days. The presence of 38 millimolar itaconate inhibited the incidence of seed germination and the growth of embryo axes as well as the appearance of isocitrate lyase but did not alter the levels of malate synthase, catalase, or NADP+-isocitrate dehydrogenase. The specific activity for the latter enzyme was constant throughout germination. Oxalate or succinate, each at 38 millimolar, had no effect upon germination of flax seeds. Itaconate did not inhibit the activities of malate synthase, catalase, or NADP+-isocitrate dehydrogenase in vitro but was a potent noncompetitive inhibitor of isocitrate lyase (Ki:17 micromolar at 30 C, pH 7.6). Itaconate (at 38 millimolar) did not alter the appearance of malate synthase but reduced the incidence of germination, onset of germination, and growth of the embryo axis as well as the specific activity of isocitrate lyase in seedlings of Zea mays, Vigna glabra, Glycine hispida, Vigna sinensis, Trigonella foenumgraecum, Lens culinaris, and Medicago sativa. The incidence and onset of germination of wheat seeds were unaltered by the same concentration of itaconate but seedlings did not contain isocitrate lyase or malate synthase. The data suggest that itaconate may be isocitrate lyase-directed in inhibiting the germination of fatty seeds.  相似文献   

3.
Summary After the functional transition of glyoxysomes to leaf peroxisomes during the greening of pumpkin cotyledons, the reverse microbody transition of leaf peroxisomes to glyoxysomes occurs during senescence. Immunocytochemical labeling with protein A-gold was performed to analyze the reverse microbody transition using antibodies against a leaf-peroxisomal enzyme, glycolate oxidase, and against two glyoxysomal enzymes, namely, malate synthase and isocitrate lyase. The intensity of labeling for glycolate oxidase decreased in the microbodies during senescence whereas in the case of malate synthase and isocitrate lyase intensities increased strikingly. Double labeling experiments with protein A-gold particles of different sizes showed that the leaf-peroxisomal enzymes and the glyoxysomal enzymes coexist in the microbodies of senescing pumpkin cotyledons, indicating that leaf peroxisomes are directly transformed to glyoxysomes during senescence.  相似文献   

4.
1) Albumins and globulins were prepared from dry seeds of cucumbers (Cucumis sativus) by differential extraction. The globulin fraction was analyzed by gel electrophoresis under denaturing conditions in the presence and absence of mercaptoethanol. The subunit (Mr = 54000) of the tetramer (Mr = 240000) was shown to be composed of two different peptides. Microheterogeneity rendered the exact interpretation of the analysis difficult. 2) Glyoxysomal proteins were already present in dry seeds: malate synthase, isocitrate lyase, citrate synthase, malate dehydrogenase, catalase and crotonase could be detected unequivocally. It was demonstrated that the enzymatic and immunological properties of malate synthase and isocitrate lyase were not distinguishable from that of enzymes assigned to glyoxysomes of fully developed cotyledons. 3) Homogenates prepared from seeds by cautious cell disintegration were subjected to sucrose density gradient centrifugation and yielded microbody and protein body fractions, among other things.  相似文献   

5.
6.
Glyoxysomes in megagamethophyte of germinating ponderosa pine seeds   总被引:15,自引:11,他引:4       下载免费PDF全文
Ching TM 《Plant physiology》1970,46(3):475-482
Decoated ponderosa pine (Pinus ponderosa Laws) seeds contained 40% lipids, which were mainly stored in megagametophytic tissue and were utilized or converted to sugars via the glyoxylate cycle during germination. Mitochondria and glyoxysomes were isolated from the tissue by sucrose density gradient centrifugation at different stages of germination. It was found that isocitrate lyase, malate synthase, and catalase were mainly bound in glyoxysomes. Aconitase and fumarase were chiefly localized in mitochondria, whereas citrate synthase was common for both. Both organelles increased in quantity and specific activity of their respective marker enzymes with the advancement of germination. When the megagametophyte was exhausted at the end of germination, the quantity of these organelles and the activity of their marker enzymes decreased abruptly. At the stage of highest lipolysis, the isolated mitochondria and glyoxysomes were able to synthesize protein from labeled amino acids. Both organellar fractions contained RNA and DNA. Some degree of autonomy in glyoxysomes is indicated.  相似文献   

7.
DEVELOPMENTAL STUDIES ON GLYOXYSOMES IN RICINUS ENDOSPERM   总被引:35,自引:3,他引:32       下载免费PDF全文
The development of glyoxysomes and their associated enzymes, isocitrate lyase and malate synthetase, was studied in the endosperm of castor bean seeds during germination and early growth in darkness. The protein content of the glyoxysome fraction, separated by sucrose density centrifugation, increased linearly from day 2 to day 4 and declined subsequently, while maximum enzyme activities were reached at day 5. The specific activities of the enzymes in the glyoxysomes increased until day 5 and remained constant thereafter. At all stages of germination the only organelle with isocitrate lyase activity was the glyoxysome, but at the earlier stages a greater portion of the total activity was recovered in the soluble form. Malate synthetase was found primarily in the glyoxysomes after day 4, but at earlier stages part of the activity appeared at regions of lower density on the sucrose gradient. It was shown that this particulate malate synthetase activity was due to glyoxysomes broken during preparation, and that, as a result of this breakage, isocitrate lyase was solubilized. We conclude that both enzymes are housed in the glyoxysome in vivo throughout the germination period, and that the rise and fall in enzyme activities in phase with fat breakdown correspond to the net production and destruction of this organelle.  相似文献   

8.
Evidence is presented on the particulate nature of glyoxylate cycle enzymes in metazoa with the use of 15-day old larvae of the nematode Ascaris suum. Homogenization procedures were developed to disrupt the resistant nematode cuticle. Malate synthase and isocitrate lyase, key enzymes of the glyoxylate cycle, consistently sedimented with mitochondrial enzymes in differential pellets while catalase, a major peroxisomal enzyme, was always soluble. Isopycnic sucrose gradient centrifugation of the differential pellet yielded two protein peaks: one at 1.18 g/cm3 (characteristic for mitochondria), and another at 1.23 g/cm3 (common for glyoxysomes and peroxisomes). Electron microscopy of these fractions revealed that the lighter peak consisted primarily of mitochondria, while the heavier band contained proteinaceous bodies termed "dense granules" morphologically resembling microbodies. SIgnificantly, both malate synthase and isocitrate lyase cosedimented with the mitochondrial marker enzymes in the lighter peak (1.18 g/cm3) and not with the dense granules. Further purification of mitochondria, accomplished by separating dense granules with a step gradient before isopycnic centrifugation, substantiated the evidence that microbodies (glyoxysomes) do not occur in these nematode larvae. Rough-surfaced membranes were alternatively considered as the subcellular site, but the evidence tends to favor localization of the glyoxylate bypass enzymes in the mitochondria.  相似文献   

9.
Microbodies were isolated from the freshwater alga Vaucheria sessilis as well as from a marine Vaucheria. The organelles equilibrated on sucrose gradients at densities 1.23 g . cm?3 and 1.24g . cm?3, respectively. On electron micrographs they showed an ovoid or spheroid shape with a diameter of 0.5 to 0.8 μm. Besides catalase, the peroxisomes of both algae possess glycolate oxidase and glutamate-glyoxylate aminotransferase, but no other leaf-peroxisomal enzymes. Instead, the enzymes malate synthase and isocitrate lyase, which are markers of glyoxysomes in higher plants, are constituents of the peroxisomes in the marine as well as in the freshwater alga. Citrate synthase, aconitase, malate dehydrogenase and enzymes of the fatty acid β-oxidation pathway are located exclusively in the mitochondria. Therefore, the peroxisomes from Vaucheria do not belong to either the type of leaf peroxisomes or to the type of glyoxysomes.  相似文献   

10.
Changes in the levels of isocitrate lyase, malate synthase, catalase, fumarase, and NADP+-isocitrate dehydrogenase have been investigated during larval development of the free-living soil nematode Caenorhabditis elegans in the presence and absence of Escherichia coli. The specific activities of isocitrate lyase, malate synthase, and catalase are maximal at the time of egg hatching and, thereafter, decline during larval development when larvae feed on E. coli, whereas in the absence of E. coli specific activities of the same enzymes increase for 12 hr and subsequently remain constant. There is, however, no change in specific activity of fumarase or NADP+-isocitrate dehydrogenase during the same developmental period, in either case. Cycloheximide at 100 μM arrests the decline of isocitrate lyase during development of feeding larvae but has no effect upon the appearance of isocitrate lyase during starvation. The latter is true also for 15 mM itaconate. There is inactivation of isocitrate lyase in crude extracts of frozen worms in comparison to that in analogous extracts prepared from freshly harvested nematodes.  相似文献   

11.
Characterization of glyoxysomes from castor bean endosperm   总被引:37,自引:27,他引:10       下载免费PDF全文
Electron micrographs are presented which establish the identity of the components of the 3 major bands observed after sucrose density centrifugation of the crude particulate fraction from the endosperm of germinating castor bean seedlings. These are: mitochondria (density 1.19 g/cc), proplastids (density 1.23 g/cc) and glyoxysomes (density 1.25 g/cc). Further evidence is provided on the enzymatic composition of the glyoxysomes. Essentially all of the particulate malate synthetase, isocitrate lyase, catalase, and glycolic oxidase is present in these organelles. The distribution of glyoxysomal enzymes on sucrose density gradients is contrasted with that of the strictly mitochondrial enzymes fumarase, NADH oxidase, and succinoxidase. Malate dehydrogenase and citrate synthetase are present in both organelles. The functional role of glyoxysomes and their relationship to cytosomes from other tissues is discussed.  相似文献   

12.
13.
We have analyzed the accumulation of the glyoxylate cycle enzymes isocitrate lyase and malate synthase in embryos and seedlings of Brassica napus L. The two enzyme activities and proteins begin to accumulate during late embryogeny, reach maximal levels in seedlings, and are not detected in young leaves of mature plants. We showed previously that mRNAs encoding the two enzymes exhibit similar qualitative patterns of accumulation during development and that the two mRNAs accumulate to different levels in both embryos and seedlings (L. Comai et al., 1989, Plant Cell 1, 293-300). In this report, we show that the relative accumulation of the proteins and activities do not correspond to these mRNA levels. In embryos and seedlings, the specific activities of isocitrate lyase and malate synthase are approximately constant. By contrast, the ratio of malate synthase protein to mRNA is 14-fold higher than that of isocitrate lyase. Differences in the translational efficiencies of the two mRNAs in vitro do not appear to account for the discrepancy between mRNA and protein levels. Our results suggest that translational and/or post-translational processes affect differentially the accumulation of the proteins.  相似文献   

14.
When Rhodopseudomonas gelatinosa was grown on acetate aerobically in the dark both enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, could be detected. However, under anaerobic conditions in the light only isocitrate lyase, but not malate synthase, could be found.The reactions, which bypass the malate synthase reaction are those catalyzed by alanine glyoxylate aminotransferase and the enzymes of the serine pathway.Other Rhodospirillaceae were tested for isocitrate lyase and malate synthase activity after growth with acetate; they could be divided into three groups: I. organisms possessing both enzymes; 2. organisms containing malate synthase only; 3. R. gelatinosa containing only isocitrate lyase when grown anaerobically in the light.  相似文献   

15.
Enzymes of glyoxylate in conifers   总被引:3,自引:2,他引:1       下载免费PDF全文
The high level of lipids in seeds of some species of conifers suggested that the glyoxylate cycle might have a role in conifer seed metabolism.

Six species (Pinus pinea, Pinus pinaster, Pinus canariensis, Pinus strobus, Abies alba, and Cupressus sempervirens) were investigated for their lipid content and malate synthase and isocitrate lyase level. The fatty acid composition of the triglyceride fraction was also investigated. The correlation between lipid content of germinating seed with the presence of the cycle was confirmed. The enzymes of the glyoxylate cycle were not detected in Cupressus sempervirens where the lipid content is very low.

  相似文献   

16.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

17.
Restriction fragment length polymorphism (RFLP) analysis was used to characterize variability in the Illinois Long-Term Selection Experiment oil strains. Considerable polymorphism was detected within each oil strain and among oil strains. Fifty-two individual plants from each of the Illinois High Oil (IHO), Illinois Low Oil (ILO), Reverse High Oil (RHO) and Reverse Low Oil (RLO) strains were sampled to determine RFLP allele/variant frequencies. Generation 90 was sampled for IHO, RHO, and RLO whereas generation 87 was sampled for ILO. Forty-nine RFLP probes distributed throughout the maize genome were used. Chi-square analysis was performed to determine if RFLP genotypes at each of the 49 RFLP loci were significantly different among strains. Oil strains that have been separated for 90 generations showed high levels of significantly-different RFLP genotypic frequencies. The comparison of ILO vs RHO gave only significant chi-square values while the comparisons of IHO vs RLO and RHO vs RLO had 111 ratios of significant to non-significant chi-square values. Strains that have been separated for only 42 generations showed a lower level of significantly-different RFLP genotypic frequencies. The comparisons of IHO vs RHO and ILO vs RLO both had only a 32 ratio of significant to non-significant chi-squares values. Detection of multiple RFLP alleles/variants among the oil strains was common with 59% of the RFLP loci examined exhibiting multiple variants. A number of RFLP loci in RHO (3) and RLO (11) were associated with a trend in RFLP allele/variant frequencies consistent with a response to reverse selection for oil concentration.  相似文献   

18.
Results are presented on the intracellular localization of some of the enzymes of gluconeogenesis, of the tricarboxylic acid cycle and of related enzymes in Astasia and Euglena grown with various substrates. The results indicate the particulate nature of at least part of the malate synthase of Astasia and of part of the malate synthase and isocitrate lyase in Euglena. However, the presence of glyoxysomes (microbodies) in Astasia and Euglena is still open to question, since it has not, so far, been possible to separate the enzymes of the glyoxylate cycle from succinate dehydrogenase in the particulate fraction.  相似文献   

19.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

20.
The sequence of glyoxysomal enzyme development was investigated in cotyledons of cotton (Gossypium hirsutum L. cv. Deltapine 16) embryos from 16 to 70 days after anthesis (DAA). Catalase, malate dehydrogenase, and citrate condensing enzyme activities were barely detectable prior to 22 DAA, but showed dramatic increases from 22 to 50 DAA. Development of malate synthase activity, however, was delayed during this period, rising to peak activity from 45 to 50 DAA (just prior to desiccation) in the absence of any detectable isocitrate lyase activity. Substantial activities of all of these enzymes (except isocitrate lyase) persisted in the dry seeds. Isopycnic centrifugations on sucrose gradients demonstrated that the enzymes were compartmentalized within particles increasing in buoyant density with time of development (1.226 to 1.245 grams per cubic centimeter from 22 to 50 DAA). Of particular significance were the observations in 22-day embryos of smooth surfaced membrane dilations of rough endoplasmic reticulum having cytochemical catalase reactivity, and the demonstrations of catalase activities in microsomal fractions isolated throughout the 16- to 50-DAA period. Our data do not allow determination of the mechanism(s) for enzyme activation and/or addition to previously existing or newly formed microbodies, but do show that development and acquisition of enzyme activities within glyoxysomes occur sequentially and thus are not regulated in concert as previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号