首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of tandem repeat number to the O-glycosylation of mucins   总被引:2,自引:0,他引:2  
The serine- and threonine-rich tandem repeat (TR) units that make up the characteristic feature of mucin glycoproteins are often polymorphic with substantial genetic variation in TR number. The precise effect of TR number on O-glycosylation is not fully understood, although the TR number of several mucins may be associated with apparent susceptibility to certain human diseases. To evaluate the contribution of TR number to O-glycosylation, we generated a series of chimeric mucins carrying increasing numbers of TR units from the MUC5B mucin in the context of an epitope-tagged MUC1 mucin backbone. These mucins were expressed in Caco2 colon carcinoma cell clones and purified by immunoprecipitation. O-Glycosylation was investigated by western blotting with antibodies to known carbohydrate structures and by fast atom bombardment-mass spectrometry. Additional carbohydrate epitopes were detected with antibodies on chimeric mucins with a higher TR number in comparison to those with fewer TRs. Using mass spectrometry, higher-molecular-weight glycans were detected more frequently on the mucins with extended TRs compared to those with fewer TRs. However no novel carbohydrate structures were seen, suggesting that TR number does not affect the specificity of O-glycosylation.  相似文献   

2.
The MUC6 mucin was originally isolated from stomach mucus and is one of the major secreted mucins of the digestive tract. A full-length cDNA has not been isolated for this large molecule (greater than 15 kb) and it remains poorly studied. To circumvent the lack of reagents for investigating MUC6, we isolated a cDNA clone from a human fetal pancreatic duct cDNA library that encodes 282 amino acids of the MUC6 tandem repeat. A blast search with the sequence of this cDNA clone showed 90% homology with the original MUC6 (L07517) derived from a human stomach cDNA library and 95% homology both with AK096772, a MUC6-related protein isolated from a human prostate cDNA library and the human genome project clone AC083984. The MUC6 partial cDNA clone isolated from fetal pancreas was inserted into an epitope-tagged MUC1 mucin molecule in place of the native tandem repeat. This chimeric mucin was expressed in human pancreatic (Panc1) and colon (Caco2) carcinoma cell lines and purified for analysis of O-glycosylation by fast atom bombardment mass spectrometry (FAB-MS). The FAB-MS spectra showed O-glycans that had been detected previously on chimeric mucins carrying different tandem repeats, though the spectra for MUC1F/6TR mucins expressed in the Panc1 and Caco2 cells were very different. There was a paucity of O-glycosylation in Panc1 cells in comparison to Caco2 cells where many more structures were evident, and the most abundant glycans in Panc1 cells were sialylated.  相似文献   

3.
The cause of the mucus clearance problems associated with cystic fibrosis remains poorly understood though it has been suggested that mucin hypersecretion, dehydration of mucins, and biochemical abnormalities in the glycosylation of mucins may be responsible. Since the biochemical and biophysical properties of a mucin are dependent on O-glycosylation, our aim was to evaluate the O-glycosylation of a single mucin gene product in matched pairs of cells that differed with respect to CFTR expression. An epitope-tagged MUC1 mucin cDNA (MUC1F) was used to detect variation in mucin glycosylation in stably transfected colon carcinoma cell lines HT29 and Caco2. The glycosylation of MUC1F mucin was evaluated in matched pairs of Caco2 cell lines that either express wild-type CFTR or have spontaneously lost CFTR expression. The general glycosylation pattern of MUC1F was evaluated by determining its reactivity with a series of monoclonal antibodies against known blood group and tumor-associated carbohydrate antigens. Metabolic labeling experiments were used to estimate the gross levels of glycosylation and sulfation of MUC1F mucin in these matched pairs of cell lines. Expression of CFTR in this experimental system did not affect the gross levels of glycosylation or sulfation of the MUC1F mucin nor the types of carbohydrates structures attached to the MUC1F protein.  相似文献   

4.
The mucus filling the human cervical opening blocks the entry to the uterus, but this has to be relative and allow for the sperm to penetrate at ovulation. We studied this mucus, its content of proteins and mucins, and the mucin O-glycosylation in cervical secretions before, during, and after ovulation. Cervical mucosal secretions from 12 subjects were collected, reduced-alkylated, separated with polyacrylamide or agarose/polyacrylamide gel electrophoresis, and stained with silver, Alcian blue, or Coomassie Blue stain. Protein and mucin bands from before and during ovulation were digested and subsequently analyzed by nano-LC-FT-ICR MS and MS/MS. We identified 194 proteins after searches against the NCBI non-redundant protein database and an in-house mucin database. Three gel-forming (MUC5B, MUC5AC, and MUC6) and two transmembrane mucins (MUC16 and MUC1) were identified. For the analysis of mucin O-glycosylation, separated mucins from six individuals were blotted to PVDF membranes, and the O-glycans were released by reductive beta-elimination and analyzed with capillary HPLC-MS and -MS/MS. At least 50 neutral, sialic acid-, and sulfate-containing oligosaccharides were found. An increase of GlcNAc-6GalNAcol Core 2 structures and a relative decrease of NeuAc residues are typical for ovulation, and NeuAc-6GalNAcol and NeuAc-3Gal- epitopes are typical for the non-ovulatory phases. The cervical mucus at ovulation is thus characterized by a relative increase in neutral fucosylated oligosaccharides. This comprehensive characterization of the mucus during the menstrual cycle suggests mucin glycosylation as the major alteration at ovulation, but the relation to the altered physicochemical properties and sperm penetrability is still not understood.  相似文献   

5.
A recombinant mucin O-glycosylation reporter protein, containing 1.7 tandem repeats (TRs) from the transmembrane mucin MUC1, was constructed. The reporter protein, MUC1(1.7TR)-IgG2a, was produced in CHO-K1 cells to study the glycosylation of the MUC1 TR and the in vivo role of polypeptide-GalNAc-T4 glycosyltransferase. N-terminal sequencing of MUC1(1.7TR)-IgG2a showed that all five potential O-glycosylation sites within the TR were used, with an average density of 4.5 glycans per repeat. The least occupied site was Thr in the PDTR motif, where 75% of the molecules were glycosylated, compared to 88-97% at the other sites. This glycan density was confirmed by an alternative liquid chromatography-mass spectrometry (LC-MS) based approach. The O-linked oligosaccharides were released from MUC1(1.7TR)-IgG2a and analyzed by nano-LC-MS and LC-MS/MS. Four oligosaccharides were present, NeuAcalpha2-3Galbeta1-3GalNAcol, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAcol, Galbeta1-3(NeuAcalpha2-6)GalNAcol, and Galbeta1-3GalNAcol, the two first being most abundant. Coexpression of the human polypeptide-GalNAc-T4 transferase with MUC1(1.7TR)-IgG2a increased the glycan occupancy at Thr in PDTR, Ser in VTSA, and Ser in GSTA, supporting the function of GalNAc-T4 proposed from previous in vitro studies. The expression of GalNAc-T4 with a mutation in the first lectin domain (alpha) had no glycosylation effect on PDTR and GSTA but surprisingly gave a dominant negative effect with a decreased glycosylation to around 50% at the Ser in VTSA. The results show that introduction of glycosyltransferases can specifically alter the sites for O-glycosylation in vivo.  相似文献   

6.
Mucins are macromolecules lying the cells in contact with external environment and protect the epithelium against constant attacks such as digestive fluids, microorganisms, pollutants, and toxins. Mucins are the main components of mucus and are synthesized and secreted by specialized cells of the epithelium (goblet cells, cells of mucous glands) or non mucin-secreting cells. Human mucin genes show common features: large size of their mRNAs, large nucleotide tandem repeat domains, complex expression both at tissular and cellular level. Since 1987, 21 MUC symbols have been used to designate genes encoding O-glycoproteins containing tandem repeat domains rich in serine, threonine and proline. Some of these genes encode true mucins while others encode non mucin adhesion O-glycoproteins. In this paper, we propose a classification based on sequence similarities and expression areas. Two main families can be distinguished: secreted mucins or gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6), and membrane-bound mucins (MUC1, MUC3, MUC4, MUC12, MUC17). Muc-deficient mice will provide important models in the study of functional relationships between these two mucin families.  相似文献   

7.
The O-glycans that decorate mucin glycoproteins contribute to the biophysical and biochemical properties of these molecules and hence their function as a barrier and lubricant on epithelial surfaces. Alterations in mucin O-glycosylation in certain diseases may contribute to pathology. It is known that both the host cell type and the amino acid sequence of the mucin tandem repeat contribute to the O-glycosylation of a mucin molecule. We expressed an epitope-tagged MUC1 mucin cDNA construct in the airway cell line 16HBE14o- and the colon carcinoma cell line Caco2 and used Fast Atom Bombardment Mass Spectrometry to evaluate the contribution of the host cell to differences in O-glycosylation of a single mucin. Many of the glycans detected on the MUC1 mucin were common to both cell types, as would be predicted from biosynthetic constraints. However, MUC1 synthesized in the airway cell line showed comparatively low levels of sialylation but carried a range of oligo-N-acetyllactosamine structures that were not seen in the colon carcinoma cell line.  相似文献   

8.
A longstanding question in obstructive airway disease is whether observed changes in mucin composition and/or posttranslational glycosylation are due to genetic or to environmental factors. We tested whether the mucins secreted by second-passage primary human bronchial epithelial cell cultures derived from noncystic fibrosis (CF) or CF patients have intrinsically different specific mucin compositions, and whether these mucins are glycosylated differently. Both CF and non-CF cultures produced MUC5B, predominantly, as judged by quantitative agarose gel Western blots with mucin-specific antibodies: MUC5B was present at approximately 10-fold higher levels than MUC5AC, consistent with our previous mRNA studies (Bernacki SH, Nelson AL, Abdullah L, Sheehan JK, Harris A, William DC, and Randell SH. Am J Respir Cell Mol Biol 20: 595-604, 1999). O-linked oligosaccharides released from purified non-CF and CF mucins and studied by HPLC mass spectrometry had highly variable glycan structures, and there were no observable differences between the two groups. Hence, there were no differences in either the specific mucins or their O-glycans that correlated with the CF phenotype under the noninfected/noninflammatory conditions of cell culture. We conclude that the differences observed in the mucins sampled directly from patients are most likely due to environmental factors relating to infection and/or inflammation.  相似文献   

9.
High molecular weight mucins were isolated and purified from human middle ear effusions of children with Otitis Media with Effusion (OME) classified into three groups, (1) thick and (2) thin from anatomically normal children and (3) effusions from cleft palate patients. Amino acid analyses of the purified mucins from the three pools were similar but not identical with characteristic contents of serine threonine and proline (32%, 28%, and 38% for pools (1) (2) and (3) respectively). Proteinase resistant glycopeptide fragments corresponding to the tandem repeat domains of cloned mucin genes showed marked differences both between the three mucin pools and with the composition of the tandem repeat sequences of the cloned mucin genes expressed in the airways. Studies on the antigenic identity of middle ear mucins found an epitope likely to be present on MUC5AC, but only accounting for a maximum of 15% by weight and no reactivity was found with antibodies to MUC2 or MUC1. A polyclonal antibody raised to thick effusion mucins reacted strongly with human salivary mucin suggesting the presence of MUC5B epitopes. These studies suggest that more than one mucin gene product is secreted by the human middle ear mucosa and that there may be further mucin genes expressed by the middle ear that have yet to be cloned.  相似文献   

10.
Sequence similarities between the oligomeric mucins (MUC2, MUC5AC, MUC5B) and the von Willebrand factor suggest that they may be assembled in a similar way. After oligomerization, a fragment corresponding to the D1 and D2 domains is released from the von Willebrand factor. This cleavage does not appear to occur in pig submaxillary mucin, the only mammalian mucin in which this cleavage has been examined thus far, but whether other oligomeric mucins undergo N terminus proteolysis is not known. Antibodies recognizing the D1, D2, D3, and the first Cys domains in MUC5B were established and used to investigate to what extent proteolytic cleavage occurs within the N-terminal part of salivary MUC5B. The antibodies against the D1 and D2 domains identified a polypeptide corresponding in size to a MUC5B fragment generated by cleavage within the D' domain analogously with the von Willebrand factor propolypeptide. The antibodies did not recognize the main mucin population, suggesting that the major part of salivary MUC5B is subjected to this cleavage. An antibody recognizing the D3 domain was used to reveal a second cleavage site in the "soluble" but not in the "insoluble" MUC5B fraction: the first structural difference observed between soluble and insoluble salivary MUC5B. The identification of these cleavage events shows that the N-terminal sites for MUC5B oligomerization are present in the D3 domain and/or in domains located C-terminal to this part of the molecule.  相似文献   

11.
The gel-forming MUC5AC and MUC5B mucins have been identified as major components of human airway mucus but it is not known whether additional mucin species, possibly with other functions, are also present. MUC16 mucin is a well-known serum marker for ovarian cancer, but the molecule has also been found on the ocular surface and in cervical secretions suggesting that it may play a role on the normal mucosal surface. In this investigation, the LUM16-2 antiserum (raised against a sequence in the N-terminal repeat domain) recognized MUC16 in goblet and submucosal gland mucous cells as well as on the epithelial surface of human tracheal tissue suggesting that the mucin originates from secretory cells. MUC16 mucin was present in 'normal' respiratory tract mucus as well as in secretions from normal human bronchial epithelial (NHBE) cells. MUC16 from NHBE cells was a high-molecular-mass, monomeric mucin which gave rise to large glycopeptides after proteolysis. N- and C-terminal fragments of the molecule were separated on gel electrophoresis showing that the MUC16 apoprotein undergoes a cleavage between these domains, possibly in the SEA domain as demonstrated for other transmembrane mucins; MUC1 and MUC3. After metabolic labeling of NHBE cells, most of the secreted monomeric, high-molecular-mass [(35)S]sulphate-labelled molecules were immunoprecipitated with the OC125 antibody indicating that MUC16 is the major [(35)S]sulphate-labelled mucin in NHBE cell secretions.  相似文献   

12.
Early-passage normal human tracheobronchial epithelial (NHTBE) cells grown in air-liquid interface cultures in medium containing retinoids differentiate into a mucociliary epithelium over a 2- to 3-wk period and express increasing mRNA levels of the airway mucin genes MUC5AC and MUC5B as the cultures age; the levels of MUC2 mRNA were very low throughout the study. Using specific antibodies to MUC5AC and MUC5B mucins, we noted a gradual increase in these two mucins in the intracellular and apically secreted pools as a function of time. A low level of MUC2 mucin was detected, which did not change with time. The intracellular and apically secreted mucins isolated from day 14 and day 21 cultures by density gradient centrifugation were similar in density to those previously isolated from human respiratory mucus secretions. The sedimentation rate of the apically secreted mucins indicated that they were highly oligomerized, polydisperse macromolecules similar to those previously documented from in vivo secretions. In contrast, the cell-associated mucins from the cultured NHTBE cells were much smaller, possibly only monomers and dimers. Anion-exchange chromatography detected no differences in charge density between the reduced and carboxymethylated cell-associated and secreted forms of the MUC5AC and MUC5B mucins. The MUC5AC mucin was of similar charge density to its in vivo counterpart; however, MUC5B was more homogeneous than that found in vivo. Finally, evidence is presented for an intracellular NH(2)-terminal cleavage of the MUC5B mucins. These studies indicate that the mucins produced by cultured NHTBE cells are similar to those found in human airways, suggesting that this cell culture model is suited for studies of respiratory mucin biosynthesis, processing, and assembly.  相似文献   

13.
Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.  相似文献   

14.
The MG1 population of mucins was isolated from human whole salivas by gel chromatography followed by isopycnic density gradient centrifugation. The reduced and alkylated MG1 mucins, separated by anion exchange chromatography, were of similar size (radius of gyration 55-64 nm) and molecular weight (2.5-2.9 x 10(6) Da). Two differently-charged populations of MG1 subunits were observed which showed different reactivity with monoclonal antibodies to glycan epitopes. Monosaccharide and amino acid compositional analyses indicated that the MG1 subunits had similar glycan structures on the same polypeptide. An antiserum recognizing the MUC5B mucin was reactive across the entire distribution, whereas antisera raised against the MUC2 and MUC5AC mucins showed no reactivity. Western blots of agarose gel electrophoresis of fractions across the anion exchange distribution indicated that the polypeptide underlying the mucins was the product of the MUC5B gene. Amino acid analysis and peptide mapping performed on the fragments produced by trypsin digestion of the two MG1 populations yielded data similar to that obtained for MUC5B mucin subunits prepared from respiratory mucus (Thornton et al., 1997) and confirmed that the MUC5B gene product was the predominant mucin polypeptide present. Isolation of the MG1 mucins from the secretions of the individual salivary glands (palatal, sublingual, and submandibular) indicate that the palatal gland is the source of the highly charged population of the MUC5B mucin.  相似文献   

15.
A current challenge is to define the biological characteristics of colon tumor cells resistant to chemotherapy. Distinct sub-populations of mucus-secreting cells were previously obtained from the colon cancer cell line HT-29 after long-term treatment with the anti-cancer drugs, 5-fluorouracil (5-FU) and methotrexate (MTX). Since mucins are increasingly implicated as playing a role in carcinogenesis, we studied the pattern of mucin expression in two HT-29 clones of mucus-secreting and two clones of enterocyte-like phenotype which differ in their capacity to resist to 5-FU and/or MTX. The expression of both transmembrane (MUC1, MUC3, MUC4) and secreted gel-forming (MUC2, MUC5AC, MUC5B, MUC6) mucins in clones was studied by northern and/or western blotting. The four HT-29 clones showed three cellular phenotypes: (1) The mucus-secreting clone HT29-5F12 consists of unpolarized cells with mucus secretions that have anti-colonic mucin immunoreactivity, and mainly expresses MUC2 and is resistant to 5-FU and sensitive to MTX; (2) The mucus-secreting clone HT29-5M21 forms a monolayer of polarized cells with strong anti-gastric mucin immunoreactivity and mainly expresses MUC5AC and MUC5B and is resistant to MTX and sensitive to 5-FU; (3) The two enterocyte-like clones, HT29-5F7 and HT29-5M12 are resistant to both MTX and 5-FU and express mainly MUC1 and MUC5B, respectively. These clones which originate from a same colorectal tumour and display different patterns of mucin expression as well as differing resistance to MTX and 5-FU will make useful in vitro models for studying the potential role of mucins or other biological markers in drug resistance pathways.  相似文献   

16.
Mucin genes encode a family of the largest expressed proteins in the human genome. The proteins are highly substituted with O-linked oligosaccharides that greatly restrict access to the peptide backbones. The genomic organization of the N-terminal, O-glycosylated, and C-terminal regions of most of the mucins has been established and is available in the sequence databases. However, much less is known about the fate of their exposed protein regions after translation and secretion, and to date, detailed proteomic studies complementary to the genomic studies are rather limited. Using mucins isolated from cultured human airway epithelial cell secretions, trypsin digestion, and mass spectrometry, we investigated the proteome coverage of the mucins responsible for the maintenance and protection of the airway epithelia. Excluding the heavily glycosylated mucin domains, up to 85% coverage of the N-terminal region of the gel-forming mucins MUC5B and MUC5AC was achieved, and up to 60% of the C-terminal regions were covered, suggesting that more N- and sparsely O-glycosylated regions as well as possible other modifications are available at the C-terminus. All possible peptides from the cysteine-rich regions that interrupt the heavily glycosylated mucin domains were identified. Interestingly, 43 cleavage sites from 10 different domains of MUC5B and MUC5AC were identified, which possessed a non-tryptic cleavage site on the N-terminal end of the peptide, indicating potential exposure to proteolytic and/or "spontaneous cleavages". Some of these non-tryptic cleavages may be important for proper maturation of the molecule, before and/or after secretion. Most of the peptides identified from MUC16 were from the SEA region. Surprisingly, three peptides were clearly identified from its heavily glycosylated regions. Up to 25% coverage of MUC4 was achieved covering seven different domains of the molecule. All peptides from the MUC1 cytoplasmic domain were detected along with the three non-tryptic cleavages in the region. Only one peptide was identified from MUC20, which led us to successful antisera raised against the molecule. Taken together, this report represents our current efforts to dissect the complexities of mucin macromolecules. Identification of regions accessible to proteolysis can help in the design of effective antibodies and points to regions that might be available for mucin-protein interactions and identification of cleavage sites will enable understanding of their pre- and post-secretory processing in normal and disease environments.  相似文献   

17.
To investigate the expression of MUC6 mucin in gastric carcinomas, we generated a novel monoclonal antibody (MAb CLH5) using an MUC6 synthetic peptide. MAb CLH5 reacted exclusively with the MUC6 peptide and with native and deglycosylated mucin extracts from gastric tissues. MAb CLH5 immunoreactivity was observed in normal gastric mucosa restricted to pyloric glands of the antrum and mucopeptic cells of the neck zone of the body region. In a series of 104 gastric carcinomas, 31 (29.8%) were immunoreactive for MUC6. The expression of MUC6 was not associated with histomorphological type or with clinicopathological features of the carcinomas. Analysis of the co-expression of MUC6 with other secreted mucins (MUC5AC and MUC2) in 20 gastric carcinomas revealed that different mucin core proteins are co-expressed in 55% of the cases. MUC6 was co-expressed and co-localized with MUC5AC in 45% and with MUC2 in 5% of the cases. Expression of MUC2 alone was observed in 25% of the cases. All carcinomas expressing MUC2 mucin in more than 50% of the cells were of the mucinous type according to the WHO classification. The co-expression of mucins was independent of the histomorphological type and stage of the tumors. In conclusion, we observed, using a novel well-characterized MAb, that MUC6 is a good marker of mucopeptic cell differentiation and is expressed in 30% of gastric carcinomas, independent of the clinicopathological features of the cases. Furthermore, we found that co-expression and co-localization of mucins in gastric carcinomas is independent of histomorphology and staging. Finally, we observed that intestinal mucin MUC2 is expressed as the most prominent mucin of the mucins tested in mucinous-type gastric carcinomas.  相似文献   

18.
MUC1 mucin is a transmembrane glycoprotein that is highly expressed in various cancer cell lines and is also present in most of the glandular epithelial cells including the airway. Although the presence of numerous phosphorylation sites in its cytoplasmic domain suggests its potential role as a receptor, the unavailability of a ligand for MUC1 mucin has limited our understanding of its function. In this paper, we tried to circumvent this problem by constructing a chimeric receptor containing the cytoplasmic domain of MUC1 mucin, which can be phosphorylated on activation. To this end, we constructed a chimeric plasmid vector (pCD8/MUC1) by replacing the extracellular and transmembrane domains of human MUC1 mucin with those of human CD8. Transient transfection of the vector into COS-7 cells resulted in expression of the chimeric receptor on the surface of the COS-7 cells as judged by immunologic assays with various antibodies as well as by fluorescence-activated cell-sorting analysis. Treatment of the transfected COS-7 cells with an anti-CD8 antibody resulted in a significant increase in phosphorylation of tyrosine moieties of the chimeric receptor. This chimeric receptor will serve as a powerful tool in elucidating the signaling mechanism as well as the functional role of MUC1 mucin in the airway.  相似文献   

19.
The mucins secreted from the colon carcinoma cell line COLO 205 have the MUC1 and CD43 (leukosialin) as core proteins, where both carry sialyl-Lewis a and MUC1 sialyl-Lewis x epitopes. The adhesion of E-selectin expressing CHO cells to the coated mucins was analyzed in a flow system revealing that the MUC1 mucin adhered better than the CD43 mucin. One reason could be their different glycosylation, a difference that was explored by analyzing the biosynthesis of MUC1 and CD43 in COLO 205 cells. Both the MUC1 and CD43 mucins became sialyl-Lewis a reactive, but after different times as revealed by pulse-chase studies. However, only MUC1 became sialyl-Lewis x reactive. These differences suggest that MUC1 and CD43 are synthesized in different compartments of the cell. It was also observed that the mucins from colon carcinoma patients had MUC1-type mucins that carried both sialyl-Lewis a and x epitopes and CD43-type sialyl-Lewis a mucins with only low levels of sialyl-Lewis x epitopes. One could hypothesize that colon carcinoma derived MUC1 is decorated with potent E-selectin epitopes, and that this could be one of several reasons for the involvement of MUC1 in cancer development.  相似文献   

20.
The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this study, we have developed chemoenzymatic synthesis of extended MUC1 TR glycopeptides with cancer-associated O-glycosylation using a panel of recombinant human glycosyltransferases. MUC1 glycopeptides with different densities of Tn and STn glycoforms conjugated to KLH were used as immunogens to evaluate an optimal vaccine design. Glycopeptides with complete O-glycan occupancy (five sites per repeat) elicited the strongest antibody response reacting with MUC1 expressed in breast cancer cell lines in both Balb/c and MUC1.Tg mice. The elicited humoral immune response showed remarkable specificity for cancer cells suggesting that the glycopeptide design holds promise as a cancer vaccine. The elicited immune responses were directed to combined glycopeptide epitopes, and both peptide sequence and carbohydrate structures were important for the antigen. A MAb (5E5) with similar specificity as the elicited immune response was generated and shown to have the same remarkable cancer specificity. This antibody may hold promise in diagnostic and immunopreventive measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号