首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The t(4;8)(p16;p23) translocation, in either the balanced form or the unbalanced form, has been reported several times. Taking into consideration the fact that this translocation may be undetected in routine cytogenetics, we find that it may be the most frequent translocation after t(11q;22q), which is the most common reciprocal translocation in humans. Case subjects with der(4) have the Wolf-Hirschhorn syndrome, whereas case subjects with der(8) show a milder spectrum of dysmorphic features. Two pairs of the many olfactory receptor (OR)-gene clusters are located close to each other, on both 4p16 and 8p23. Previously, we demonstrated that an inversion polymorphism of the OR region at 8p23 plays a crucial role in the generation of chromosomal imbalances through unusual meiotic exchanges. These findings prompted us to investigate whether OR-related inversion polymorphisms at 4p16 and 8p23 might also be involved in the origin of the t(4;8)(p16;p23) translocation. In seven case subjects (five of whom both represented de novo cases and were of maternal origin), including individuals with unbalanced and balanced translocations, we demonstrated that the breakpoints fell within the 4p and 8p OR-gene clusters. FISH experiments with appropriate bacterial-artificial-chromosome probes detected heterozygous submicroscopic inversions of both 4p and 8p regions in all the five mothers of the de novo case subjects. Heterozygous inversions on 4p16 and 8p23 were detected in 12.5% and 26% of control subjects, respectively, whereas 2.5% of them were scored as doubly heterozygous. These novel data emphasize the importance of segmental duplications and large-scale genomic polymorphisms in the evolution and pathology of the human genome.  相似文献   

2.
The t(4;8)(p16;p23) is the second most common constitutional chromosomal translocation and is caused by an ectopic meiotic recombination between the olfactory receptor gene clusters (ORGC), located on chromosome 4p and 8p. Given that ORGCs are scattered across the genome and make-up about 0.1% of the human genome we reasoned that translocations between 4p16 and other chromosomes might be mediated by ectopic recombination between different ORGC. In 13 patients, we mapped the breakpoints of either a balanced or unbalanced translocation between chromosome 4p16 and different chromosomes. For all four t(4;8) cases, the breakpoints fall within the 4p and 8pter ORGC, confirming that non-allelic homologous recombination (NAHR) between the ORGC is the main mechanism of the t(4;8) formation. For the nine other translocations, the breakpoints on chromosome 4 mapped to different loci, one of them within the ORGC and in two flanking the ORGC. In these three cases, the translocation breakpoint at the reciprocal chromosome did not contain ORGC sequences. We conclude that only the t(4;8) is mediated by NAHR between ORGC.  相似文献   

3.
Cytogenetic analysis of meningioma cells from one particular patient (MN32) displayed the stem-line karyo-type 45, XY, -1, 4p+, 22q-, 22q+, which thus had rearrangements of both chromosomes 22. The 22q+ marker appeared as a dicentric: 22 pter----q11::1p11----qter. The reciprocal product of this translocation has presumably been lost because it lacked a centromere. The 22q- chromosome also appeared to have lost sequences distal to band q11. We assumed that this marker could have been the result of a reciprocal translocation between chromosomes 4 and 22. To investigate the 4p+ and 22q- chromosomes in more detail, human-hamster somatic cell hybrids were constructed that segregated the 22q- and 4p+ chromosomes. Southern blot analysis with DNA from these hybrids showed that sequences from 22q were indeed translocated to 4p+ and that reciprocally sequences from 4p were translocated to 22q-, demonstrating a balanced t(4;22)(p16;q11). On the basis of these results we presume that in this tumor a tumor-suppressor gene is deleted in the case of the 22q+ marker and that the t(4;22) disrupts the second allele of this gene. The latter translocation was mapped between D22S1 and D22S15, a distance of 1 cM on the linkage map of this chromosome. The area in which we have located the translocation is within the region where the gene predisposing to neurofibromatosis 2 has been mapped.  相似文献   

4.
Partial Trisomy 14q is a rare chromosomal disorder that mostly results from a parental translocation. We report here a newborn boy with partial trisomy 14q and dysmorphic features that are compatible with previously reported cases. Conventional cytogenetic analysis revealed an extra chromosomal segment at the end of the short arm of chromosome 4. In order to determine the origin of this chromosome region we used subtelomeric FISH technique. Based on the results of these cytogenetic studies and the physical examination, this dysmorphic case was diagnosed as partial trisomy of 14q and his karyotype determined as 46 XY, der(4)t(4;14)(p16;q32) resulting from a balanced maternal translocation identified as 46,XX, t(4;14)(p16;q32).  相似文献   

5.
We describe a 7-month-old male child with Silver-Russel syndrome (SRS) phenotype, presented with two major clinical features: low birth weight, short stature, and minor features, such as macrocephaly, clinodactyly, essential for the diagnosis of SRS. Routine cytogenetic studies with GTG-banding showed 46,XY,t(11;16)(p13;q24.3). Fluorescence in situ hybridisation (FISH) with single copy probes BAC (11p13) and PAC (16q24.3), showed a reciprocal translocation. Chromosomal analysis of the mother was normal and the phenotypically normal father had apparently identical translocation t(11;16)(p13;q24.3). The disruption of growth factor genes at 11p and 16q breakpoint regions due to reciprocal translocation in the father might have caused SRS phenotype in the child.  相似文献   

6.
Summary A new translocation t(1;11;4)(1pter1p32::11q23 11q13::4p164qter) was found in the peripheral blood of a patient with congenital acute myeloblastic leukemia (AML). It was concluted that this translocation may represent a new mutation, which caused the leukemia with very high leukocytosis, hepatosplenomegaly, leukemic infiltration of the majority of the organs, and a very poor prognosis.  相似文献   

7.
Familial aniridia and translocation t(4;11)(q22;p13) without Wilms' tumor   总被引:12,自引:2,他引:10  
A family with dominantly inherited aniridia in three generations is presented. All three patients had an apparently balanced chromosome translocation t(4;11)(q22;p13). The patients were otherwise clinically normal and without signs of Wilms' tumor; their erythrocyte catalase activities were within the normal range. We suggest that in this family aniridia is caused either by a submicroscopic deletion at the translocation breakpoint 11p13 or by a position effect on the same chromosome segment. Furthermore, the loci for aniridia and Wilms' tumor susceptibility are separate. It follows that the WAGR complex is caused by a mutation of more than one gene located at 11p13. The theoretical implications of a presumably defective allele causing a mendelian dominant phenotype are discussed.  相似文献   

8.
A family with Huntington disease and reciprocal translocation 4;5.   总被引:2,自引:1,他引:1       下载免费PDF全文
We report the clinical and cytogenetic findings in a family in which a balanced reciprocal translocation between the long arm of chromosome 4 and the short arm of chromosome 5 is segregating together with Huntington disease in 2 generations. In situ hybridization studies revealed that the linked human DNA marker is located on the short arm of the normal and translocated chromosome 4 in the region 4p16. The association between Huntington disease and the translocation in this family may represent a chance occurrence. However, it is also possible that there is an undetected rearrangement of DNA on chromosome 4 involving the gene for Huntington disease but not affecting the site of the linked marker. Finally, the likelihood that this represents heterogeneity cannot be excluded.  相似文献   

9.
10.
11.
12.
Summary We describe a family in which autosomal dominant congenital cataract and microphthalmia were segregating together with a reciprocal translocation t(2; 16) (p22.3;p13.3) through three generations. This family included four individuals with balanced translocations, three with partial trisomy 2p derived from this translocation, and two with a normal karyotype. All of the subjects with balanced and unbalanced translocations had congenital cataract and microphthalmia, whereas the two individuals with normal karyotypes did not show any ocular anomalies. These observations suggest that the altered function of a gene that lies on the 16p13.3 band and that has an important role in the development of the eye is responsible for this disorder.  相似文献   

13.
Summary We examined the meiotic segregation pattern of a t(1;4)(p36.2;q31.3) reciprocal translocation in two male cousins heterozygous for the translocation. The wife of subject 1 had four recognized spontaneous abortions and two carrier daughters, and the wife of subject 2 had three recognized spontaneous abortions and no liveborn children. The results showed that subject 1 had an imbalance rate of 54% and subject 2 had an imbalance rate of 61% with respect to the translocation. This was not statistically different (P = 0.3174) and the 95% confidence intervals overlapped for each segregation type. The sex ratio of X- and Y-bearing sperm was not statistically different than the expected 50%. The rate of structural abnormalities was 11.3% in subject 1 and 17.8% in subject 2. Both of these values were above the range of control subjects in our lab, but only subject 2's value fell outside the 95% confidence interval for the control population.  相似文献   

14.
Human sperm chromosome studies in a reciprocal translocation t(2;5)   总被引:7,自引:2,他引:5  
Summary Sperm chromosome complements have been studied in a man heterozygous for a reciprocal translocation t(2;5)(p11;q15). Human sperm chromosomes were obtained after fertilization of zona-free hamster eggs. A total of 75 human sperm metaphases were analysed. Of the complements studied, 59 (78.6%) resulted from a 2:2 segregation and 16 (21.3%) from a 3:1 segregation, 4:0 segregation was not observed. Our results indicate that at least 36% of sperm complements were unbalanced with respect to the translocation. The frequency of other chromosome anomalies unrelated to the translocation was 16%.  相似文献   

15.
The majority of constitutional reciprocal translocations appear to be unique rearrangements arising from independent events. However, a small number of translocations are recurrent, most significantly the t(11;22)(q23;q11). Among large series of translocations there may be multiple independently ascertained cases with the same cytogenetic breakpoints. Some of these could represent additional recurrent rearrangements, alternatively they could be identical by descent (IBD) or have subtly different breakpoints when examined under higher resolution. We have used molecular breakpoint mapping and haplotyping to determine the origin of three pairs of reciprocal constitutional translocations, each with the same cytogenetic breakpoints. FISH mapping showed one pair to have different breakpoints and thus to be distinct rearrangements. Another pair of translocations were IBD with identical breakpoint intervals and highly conserved haplotypes on the derived chromosomes. The third pair, t(4;11)(p16.2;p15.4), had the same breakpoint intervals by aCGH and fosmid mapping but had very different haplotypes, therefore they represent a novel recurrent translocation. Unlike the t(11;22)(q23;q11), the formation of the t(4;11)(p16.2;p15.4) may have involved segmental duplications and sequence homology at the breakpoints. Additional examples of recurrent translocations could be identified if the resources were available to study more translocations using the approaches described here. However, like the t(4;11)(p16.2;p15.4), such translocations are likely to be rare with the t(11;22) remaining the only common recurrent constitutional reciprocal translocation.  相似文献   

16.
Summary Partial trisomy of the long arm of chromosome 4 was observed in two related patients, a child aged 2 years and a woman aged 42. Cytogenetic investigation revealed that their chromosome anomalies were due to segregation of a familial balanced translocation t(4;18)(q27;p11). Some clinical and cytogenetic considerations are noted.  相似文献   

17.
A male infant with a deletion of 9p and concomitant duplication of 4q: 46,XY, der(9)t(4;9)(q27;p24), is described. Parental chromosome analysis showed a balanced maternal translocation. To our knowledge, the above cytogenetic and clinical abnormalities have not been described previously. A phenotype comparison is presented with previously reported cases concerning a deletion of 9p and a duplication of 4q.  相似文献   

18.
We describe a patient with partial trisomy 3p resulting from maternal translocation, t(3:4)(p23;q35). The male newborn who died at the age of 22 hours presented with distinct facial features including a square-shaped face with prominent forehead and depressed temporal regions, prominent cheeks, short broad nose, left cleft lip and cleft palate, malformed ears, and a receding mandible. Further findings were flexion deformities of the fingers with finger-like thumbs and mild cutaneous syndactyly 2/3 and 4/5, hypoplastic penis and scrotum with no palpable testes. He probably had a congenital heart defect and situs inversus abdominalis. Many of these features have been reported in other patients with distal trisomy 3p.  相似文献   

19.
Summary In a mentally retarded boy without gross malformations, karyotype analysis showed a partial 4p trisomy. His phenotypical normal father is a carrier of the balanced translocation t(4p-; 14p+ or 15p+).
Zusammenfassung Bei einem Jungen, der in seiner geistigen Entwicklung zurückgeblieben war, jedoch keine schweren Mißbildungen aufwies, wurde eine partielle 4p-Trisomie gefunden. Der phänotypisch normale Vater ist Träger einer balancierten Translokation t(4p-; 14p+ oder 15p+).
  相似文献   

20.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号