首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the hypothesis that the heterogeneity of epilithic algal assemblages in streams may be partly a result of hydrologic differences created when water flows over a rough substrate. A 32-day experiment was conducted in laboratory streams that contained either 22.5 × 22.5 × 4 cm or 7.5 × 22.5 × 4 cm tile blocks. Free water velocities in the streams overaged 28 cm·s?1. Hydrologic parameters and algal assemblages associated with surfaces on top of blocks and with recessed surfaces between blocks were compared to corresponding surfaces in streams with of relief. In streams with blocks, shear velocities averaged 1.7 cm·s?1 on the top of blocks and 0.8 cm·s?1 in the recessed areas. Shear velocity at corresponding surfaces in the control (no relief) streams averaged 1.9 cm·s?1 and exhibited little variation. The hydrologic differences created by the larger blocks significantly affected the distribution of algal biomass, with recessed areas having an average of 2.6 g·m?2 AFDW more biomass than surfaces on the top of blocks. Differences in shear velocities and biomass accumulation between top and recessed areas for the smaller blocks were less than for large blocks. Successional changes on all substrates were similar with the exception that recessed surfaces had a significantly greater abundance of the filamentous chlorophyte Stigeoclonium tenue (Ag.) Kütz after day 16. The results suggest that in cobble riffle areas of natural streams, the interaction between current flow and substrate relief has the potential to create patches of algae which are different in biomass and taxonomic composition.  相似文献   

2.
Experimental studies evaluating the simultaneous effects of consumers, nutrients, and other biotic/abiotic factors on intact, natural food webs are rare, particularly among ecosystems of varying trophic conditions. We conducted a series of in situ studies that used nutrient-diffusing substrata with nitrogen (N) and phosphorus (P) concentrations in a full factorial design in three temperate, limestone streams in Pennsylvania across a trophic gradient (mesotrophic, eutrophic, and hypereutrophic streams). We assessed differences in algal and macroinvertebrate biomass, taxonomic composition, and functional groups relative to amended nutrients across the trophic gradient; as such, these results facilitated predictions about regulators of food web structure. All factors varied significantly among the streams (e.g., algal biomass P = 0.005, macroinvertebrate biomass P < 0.001, algal diversity P = 0.006, macroinvertebrate diversity P < 0.001, algal group P < 0.001, macroinvertebrate guilds P < 0.001); the streams, however, did not exhibit simple responses to nutrient amendment. Algal and macroinvertebrate biomass and diversity responded greatest in the mesotrophic stream while grazing seemed to be a strong factor preventing algal nutrient response in the eutrophic and hypereutrophic streams. Brillouin’s Evenness Index was most influenced by nutrient amendment (nutrient effect on algae and macroinvertebrates P = 0.021). As such, we concluded that biomass and diversity were mediated by complexity within intermediate trophic levels.  相似文献   

3.
Previous studies have shown major differences in the way biomass of stream periphyton is controlled by spatial variations in velocity. We hypothesize that these differences may be the result of different growth forms within the community. Some dense and coherent growth forms (e.g. mucilaginous diatom/cyanobacterial mats) may be resistant to diffusion and also resistant to dislodgment by shear stress. Higher velocities applied to such communities could therefore be expected to enhance biomass accrual by increasing rates of mass transfer, but without greatly increasing losses through sloughing. Conversely, other growth forms (e.g. long filamentous green algae) have an open matrix, and high rates of diffusion into the mats can potentially occur even at low velocity. However, as velocities increase, high skin friction and form drag should lead to higher rates of sloughing. The overall result of these processes should be that maximum biomass occurs at low velocities. This “subsidy-stress” hypothesis was tested twice with each of three different periphytal growth forms: a coherent, mucilaginous, diatom community; a moderately coherent, stalked/ short, filamentous diatom community; and an open-weave, long, filamentous green algal community. A monotonic increase in chl a biomass occurred as a function of near-bed velocities for the first of the two mucilaginous diatom communities investigated. No biomass-velocity relationship was found, however, with the second mucilaginous community, probably because the waters were highly enriched and mass transfer driven by molecular diffusion was probably high throughout the velocity gradient. Biomass was moderate at low velocities, peaked at near-bed velocities from 0.18 to 0.2 m·s?1 (~0.40–0.45 m·s?1 mean column velocity), and then decreased at higher velocities in both of the stalked/ short filament communities of diatoms analyzed. With the long filamentous green algal communities, a monotonic reduction in biomass occurred as a function of increases in velocity. Proliferations greater than 100 mg·m?2 chl a occurred at low near-bed velocities (i.e. <0.2 m·s?1), after which biomass declined nearly exponentially as a function of increasing velocity to less than 10 mg·m?2 chl a at velocities greater than 0.4 m·s?1. These biomass-velocity trends support our hypothesis that community growth form determines periphytal responses to spatial variations in velocity within stream reaches.  相似文献   

4.
5.
Since periphytic biofilm is an important source of food in lotic ecosystems, it is important to understand how key ecological factors affect the accrual and loss of algal biomass and sediment in the biofilm. We designed a field experiment to evaluate the effects of mesohabitat type (pools and riffles), grazing fish (control and exclusion), and substrate roughness (smooth and rough) on chlorophyll a, ash-free dry mass (AFDM), and total dry mass in a subtropical stream. Mesohabitat type did not influence the effect of grazers on periphyton. However, rough substrates accumulated more total dry mass in pools than in riffles, while smooth substrates accumulated similar amounts of total dry mass in both mesohabitats. The accrual of AFDM and chlorophyll a was greater on rough than on smooth substrates, regardless of mesohabitat. Treatments without fish accrued more total dry mass, AFDM, and chlorophyll a than treatments with fish, showing that fish play a major role in this stream by removing sediment and algal biomass. These results suggest that habitat simplification in the scale of substrate roughness and loss of large grazers may impact the accrual and loss of algal biomass and sediment in lotic ecosystems.  相似文献   

6.
Photosynthetic activity (PA) and growth of different microalgae species (Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii) depends in addition to other factors on mixing (tip speed) and shear stress (friction velocity) and was studied in a stirring tank (microcosm). In order to detect cause–effect relationships for an increase in photosynthetic activity, experiments were conducted under different pH values (6.0–8.5) and CO2 concentrations (0.038 and 4 % (v/v)). The PA was determined as the effective quantum yield by pulse amplitude modulation during a stepwise increase of the tip speed from 0 to 589 cm s?1 (friction velocity: 0–6.05 cm s?1) in short-term experiments. The increase caused a distinctive pattern of PA of each species. Compared to 0 cm s?1, C. vulgaris and S. obliquus showed a 4.0 and 4.8 % higher PA at the optimum tip speed of 126 cm s?1 (friction velocity of 2.09 cm s?1) and a 48 and 71 % higher growth, respectively. At 203 cm s?1, the PA dropped to the value of the unstirred control, while at 589 cm s?1, the PA decreased of up to 7 and 8 %. In contrast, C. reinhardtii showed 7 % stronger growth at 126 cm s?1, while the PA decreased about 15 % at an increase of tip speed to 589 cm s?1. For all investigated microalgae, the pattern of PA and higher growth was not only explained by the main contributing factors like light supply, nutrient supply, and overcoming diffusion gradients. The results indicate that hydrodynamic forces have a stimulating effect on the physiological processes within the cells.  相似文献   

7.
The inorganic phosphorus (Pi) uptake kinetics of Spirogyra fluviatilis Hilse were examined as a function of phosphorus cell quota (QP) and flow velocity in a laboratory stream apparatus. Short-term uptake and the acclimation of the uptake mechanism to flow were measured by the disappearance of Pi pulses in a recirculating flow cell. Short-term Pi uptake was biphasic. When the alga was P-deficient, Phase 1 and 2 half-saturation constants and maximum uptake rates were 11.0 and 47.2 μg P·L?1 and 473 and 803 μg P·g dry wt?1 h?1, respectively. Flowing water altered short-term uptake when the alga was P-deficient, but not when it was P-replete. When QP was less than 0.21%, increases in flow velocity from 3 to 15 cm·s?1 enhanced uptake with maximum uptake for any Pi pulse at 12 and 15 cm·s?1. At 22 and 30 cm·s?1, uptake was reduced by 12% or more relative to the maxima. If, however, the alga was cultivated at 22 and 30 cm·s?1 and short-term Pi uptake was measured at 12 cm·s?1, uptake was on average 33% greater than when the alga was cultivated at the latter velocity. Apparently, the alga could adjust short-term uptake to compensate for the suboptimal conditions of the faster velocities. Long-term Pi uptake and net phosphorus efflux were estimated by a non-steady state application of the Droop equation. Long-term uptake of very low Pi concentrations was not reduced by fast flowing water. Instead, uptake increased proportionately with flow velocity. Maximum phosphorus efflux from S. fluviatilis was 3% of cellular P per hour and occurred when QP was greater than 0.2%. At lower QP, the hourly efflux rate was typically less than 1%. Flowing water did not greatly enhance efflux, although when Pi was undetectable, efflux did tend to increase slightly with velocity. The data show that the effects of flowing water on Pi uptake were varied and not always beneficial. If the effects of flowing water on nutrient acquisition by other lotic algae are similarly varied and complex, flow may be an important determinant of nutrient partitioning among benthic algae in streams.  相似文献   

8.
Pachychilid snails are common and widespread in tropical Asian streams, and given their abundance, these heavy-shelled prosobranchs may serve as a ‘trophic dead-end’ preventing energy transfer to higher trophic levels. Sulcospira hainanensis (Bröt, 1872) is an abundant secondary consumer in Hong Kong streams, and tends to have higher standing biomass in less shaded sites. We predicted that S. hainanensis would be more productive in unshaded streams, where snails have a higher assimilation of more nutritious algal carbon. The production and population dynamics of S. hainanensis were studied along a gradient of shading in four Hong Kong streams. The increment-summation method was considered to most realistically represent snail production, which ranged from 1,612.8 to 6,123.9 mg ash-free dry mass m?2 year?1; these estimates were among the upper range of values reported for stream prosobranchs. Production, turnover, and growth were higher in unshaded streams, where the combined effects of higher light input and nutrient concentrations likely enhanced the supply of algal food. Despite high standing biomass (26% of total benthic fauna), S. hainanensis had a relatively low (~16%) contribution to total production in one site, suggesting that it is not a major trophic dead-end in the food webs of tropical Hong Kong streams.  相似文献   

9.
1. An experiment conducted in streamside channels was used to document the regrowth of grazed periphyton. Our objective was to determine the relative importance of current velocity, grazing duration, and grazer type in shaping the trajectory of algal and periphytic regrowth. 2. The grazing mayflies Baetis bicaudatus and Epeorus longimanus were used alone and in combination to create three grazing treatments at slow, medium and fast current (2–5, 15–20 and 30–40 cm s?1, respectively). Duration treatments consisted of 2, 4, 6, 8, 10 days of grazing. Chlorophyll a and ash‐free dry mass (AFDM) accumulation on grazed tiles was measured (as periphytic AFDM and chlorophyll a, respectively) at 2, 4, 6, 8 and 10 days following the removal of grazers. 3. Chlorophyll a and AFDM was best predicted by interactions between current velocity, grazing duration and regrowth time. 4. The two grazer species did not differ in their effect on Chlorophyll a and AFDM during the period of periphytic regrowth that followed grazing. 5. Longer grazing duration reduced periphytic biomass, but also accelerated algal regrowth, and this growth enhancement was more pronounced at slower current velocities. 6. Data from this study suggest that herbivory can have important historical effects on periphytic accrual.  相似文献   

10.
11.
Despite their widespread use in grazer–biofilm studies, stream exclusion cages have inherent physical properties that may alter benthic organism colonization and growth. We used laboratory studies and a field experiment to determine how exclusion cage design (size and material) alters light availability, water velocity, and benthic organism colonization. We measured light reduction by various plastic cage materials and flow boundary layer thickness across a range of exclusion cage sizes in the laboratory. We also deployed multiple exclusion cage designs based on commonly available materials into a second-order stream to assess algae and macroinvertebrate colonization differences among exclusion cages. All plastics reduced some light (190–700 nm wavelengths) and blocked more ultraviolet light than photosynthetically active radiation. Exclusion cage size did not influence flow boundary layer thickness, but larger exclusions tended to have higher velocity at the substrata surface. Despite light and water velocity differences, algal biomass, macroinvertebrate density, and community composition were similar between exclusion cage types. However, algal assemblages outside exclusion cages differed in composition and had higher biomass compared to inside exclusion cages. In terms of algal and macroinvertebrate colonization, plastic exclusion cage size and material appear to be flexible within the sizes tested, but differences can still exist between exclusion cage communities and those within the stream. Overall, artifacts of screened exclusion cages do not appear to introduce large bias in results of grazer–biofilm studies, but efforts to design exclusion cages that better mimic the natural system should continue.  相似文献   

12.
Invasive common reed (Phragmites australis) can rapidly form expansive, near-monotypic stands, and thereby lower plant diversity and change marsh habitat structure. Consequently, North American wetland managers often use herbicides, such as glyphosate-based AquaNeat? and imazypr-based Habitat?, to control its establishment and spread. However, herbiciding might indirectly affect benthic community structure by directly altering habitat structure, and habitat alterations may vary with herbicide and concentration. These effects may be particularly pronounced ??1?year post-herbiciding when dead above-ground biomass collapses and submerges. To evaluate how herbicide-caused alterations in habitat affect key trophic linkages, we compared snail and epiphytic algal assemblages, and habitat conditions, among 20-?×?20-m replicated plots of reed treated with either AquaNeat? (30?% solution), Habitat? (5?% solution), or left herbicide-free (i.e., controls) in an eutrophic Lake Erie coastal marsh 1-y post-herbiciding. Both herbicides equally reduced reed above-ground growth by >90?% relative to controls. Fossaria spp. and Gyraulus parvus snails were more abundant in herbicide-treated plots than in controls, but Shannon-Wiener diversity was similar (H??????1.0) across treatments. All snails collected were pulmonates, suggesting habitat drying might be driving assemblage structure. Snails were denser in plots with metaphyton (mostly Spirogyra) than without, and metaphyton was more abundant in herbicide-treated plots with higher incident light levels and warmer water temperatures than in controls. Snail biomass was positively related to amount of benthic macro-organic matter but not epiphytic algal biomass, which was similar among treatments. Diatoms dominated algal communities in all treatments. In June, Navicula spp. was dominant in controls, whereas Nitzschia palea and Aulacoseira italic, and Nitzschia spp., were dominant in AquaNeat? and Habitat? treatments, respectively. However, algal and diatom assemblages were similar in treatments by early-July when marsh water levels significantly decreased and nitrate levels were <1???g/L. Marsh hydrologic patterns may mediate herbiciding??s indirect effects on trophic structure.  相似文献   

13.
Periphyton plays an important role in stream ecology, and can be sensitive to macroinvertebrate grazers, near-bed current velocity, and bedload abrasion. We manipulated conditions to examine influences on periphytic accrual in the St. Anthony Falls Laboratory Outdoor StreamLab in Minneapolis, MN, USA. Macroinvertebrate grazers were excluded from 27 of 65 clay tiles using electric pulses. We examined periphytic biomass accrual as a function of grazer presence, sampling run, and near-bed current velocity using ANCOVA. We found significant temporal differences between sampling runs but no significant effect of grazer presence. Along with a strong association between bedload transport rates and mean periphytic biomass, our results suggest that grazers are relatively unimportant in stream systems with high levels of physical disturbance from floods and associated sand bedload. However, the interaction between grazer presence and velocity was marginally significant. Regression analyses showed no relation between velocity and periphyton in the absence of grazers but a negative relation when grazers were present, suggesting that mechanical dislodgement of periphyton by grazers may increase with velocity. We conclude that grazers can have subtle effects on periphyton, particularly in streams with high bedload transport rates.  相似文献   

14.
1. Flow-chamber experiments were conducted to evaluate the ability of microcrustacea to maintain position in moving water. These results were compared to distributions of zooplankton and water velocity in a stream pool to determine the relationship of animal density to water movement and swimming ability. 2. Cladocerans exhibited negative rheotaxis (directed behaviour against a current) but poor ability to maintain position at velocities >2.5cm s?1. Daphnia and Scapholeberis were better at avoiding washout than Moina and Diaphanosoma. At velocities <2.5cm s?1Eucyclops (Cyclopoida) tended to exhibit no rheotaxis. 3. Washout of Daphnia was complete at velocities >2.5cm s?1, Scapholeberis >3.2cm s?1 and Eucyclops >7.75 cm s?1. Washout time of Daphnia and Scapholeberis was positively related to body size and negatively to water velocity and possession of eggs. Washout was inversely related to water velocity for Eucyclops. 4. Highest densities of microcrustacea in a stream pool were found in non-flowing or downstream zones of the pool. Benthic (Hydracarina, harpacticoid copepods, ostracods) and fast-swimming (cyclopoids) forms were most common in flowing zones. Facultatively benthic Cladocera were abundant in regions of no flow. Rotifers and immature copepods were most abundant at the downstream end of the pool. 5. Behavioural mechanisms for remaining in stream pools at times of high flow appear to include: (i) flow avoidance (Simocephalus, Chydorus, Scapholeberis and cyclopoids), (ii) use of benthic habitat (ostracods, harpacticoids, Hydracarina), (iii) strong swimming ability (cyclopoids).  相似文献   

15.
SUMMARY 1. The impact of the introduced omnivorous signal crayfish (Pacifastacus leniusculus) on trout fry, macroinvertebrates and algae was evaluated in a brown water stream in southern Sweden using in situ enclosures. We also examined the gut content of all surviving crayfish in the enclosures. Two crayfish densities in addition to a control without crayfish were used in replicate enclosures (1.26 m2) in a 1‐month experiment. Additionally, 20 trout fry (Salmo trutta) were stocked in each enclosure to assess the effects of crayfish on trout survival and growth. 2. Detritus was the most common food item in crayfish guts. Animal fragments were also frequent while algae and macrophytes were scarcer. Crayfish exuviae were found in crayfish guts, but the frequency of cannibalism was low. 3. Trout survival in enclosures was positively related to water velocity but was unaffected by crayfish. 4. Total invertebrate biomass and taxon richness were lower in crayfish treatments. The biomass of all predatory invertebrate taxa was reduced but only three of six non‐predatory taxa were reduced in the crayfish treatments. 5. Epiphytic algal biomass (measured as chlorophyll a, on plastic strips) was not related to crayfish density, whereas the biomass of epilithic algae (measured as chlorophyll a) was enhanced by high water velocity and high crayfish density. The latter was possibly mediated via improved light and nutrient conditions, as active crayfish re‐suspend and/or remove detritus and senescent algal cells during periods of low water velocity. 6. We conclude that the introduced signal crayfish may affect stream communities directly and indirectly. Invaded communities will have reduced macroinvertebrate taxon richness and the signal crayfish will replace vulnerable invertebrate predators such as leeches. In streams that transport large amounts of sediment or organic matter, a high density of crayfish is likely to enhance benthic algal production through physical activity rather than via trophic effects.  相似文献   

16.
Turbulence can affect predator–prey interactions. The effect of turbulence on the feeding efficiency of an ambush predator was tested with laboratory experiments. The experiments were conducted in 100-L aquaria in which ten individuals of fourth instar Chaoborus flavicans larvae were placed as predators. Two prey densities (3 and 10 ind. of Daphnia pulex L?1) and two durations (30 and 120 min) were tested in a nonturbulent treatment and five different turbulence levels [average root-mean-square (RMS) velocities ranging from 0 to 7.3 cm s?1, corresponding dissipation rates from 7.2 × 10?7 to 1.3 × 10?3 m2 s?3]. We hypothesized that the feeding rate of C. flavicans would be enhanced by turbulence due to increasing encounter rates up to a turbulence level above which a disturbance in post-encounter processes would lead to reduced feeding efficiency. However, the results showed no significant increase in the feeding rate of C. flavicans at intermediate turbulence. At high turbulence we found the expected significant negative response in the feeding rate of Chaoborus larvae. The feeding rate declined below the rates at nonturbulent and intermediate turbulence conditions as the average RMS velocity exceeded 3.1 cm s?1 (dissipation rate 9.9 × 10?5 m2 s?3, respectively).  相似文献   

17.
The objective of this study was to assess the relationship between river water quality and the distribution of benthic macroinvertebrate communities in the Haraz River in Iran. Using a surber net sampler, benthic macroinvertebrate communities along the stream was sampled in wet and dry seasons of 2015 at nine stations with three replications. The physicochemical water quality parameters were measured in the field by water checker. Hilsenhoff biotic Indices, Shannon Wiener Diversity Indices, Average Score per Taxon (ASPT) Index and Pielou Evenness Index were applied to carry out a biological assessment of water quality. A total of 3781 (spring 769, summer 1092, autumn 1095 and winter 825) benthic macroinvertebrate specimens belonging to 4 orders, 11 classes and 16 families were identified. The lowest number of taxa was recorded in spring while the highest was recorded in autumn. Station 9 had the lowest number of taxa while the highest number of taxa was recorded at station 3. The average values (±SD) of the water quality parameters were temperature 14.75?±?4.38 °C, pH 7.93?±?0.62, water flow 14.11?±?9.04 m3 s?1, electric conductivity 532.75?±?161.35 μmohs cm?1, total dissolved solids 296.61?±?76.21 mg L?1, salinity 0.28?±?0.07 mg L?1, turbidity 580.77?±?149.92 NTU and dissolved oxygen 8.08?±?0.75 mg L?1. The assessment of stations 1 to 6 indicated that water quality conditions were suitable. In addition, substantial level of organic pollution was observed in stations 7 and 8. In station 9 water quality was fairly poor, requiring a more favourable management based on the capacity of the self-purification of the Haraz River.  相似文献   

18.
王强  袁兴中  刘红 《生态学报》2012,32(21):6726-6736
浅滩和深潭是山地河流中常见的河流生境结构。2011年7月,在重庆开县东河上游双河口-杉木桥河段,选择21个浅滩和深潭,调查大型底栖动物,研究影响不同生境中底栖动物组成、分布和多样性的生态机理。结果表明:调查河段浅滩和深潭中大型底栖动物分别为31种和24种,密度分别为450.62 个/m2和86.24 个/m2,生物量分别为2.88 g/m2和0.55 g/m2。浅滩有指示种11种,即纹石蛾(Hydropsyche sp.)、假蜉(Iron sp.)、假二翅蜉(Pseudocloeon sp.)、舌石蛾(Glossosoma sp.)、高翔蜉(Epeorus sp.1)、背刺蜉(Notacanthurus sp.)、Heterocloeon sp、锯形蜉(Serratella sp.)、朝大蚊(Antocha sp.)、等蜉(Isonychia sp.)、溪颏蜉(Rhithrogena sp.)。深潭指示种仅蜉蝣(Ephemera sp.)和黑大蚊(Hexatoma sp.)两种。刮食者为两类生境的优势功能摄食类群。浅滩中滤食者和刮食者比例显著高于深潭,而收集者和捕食者显著低于深潭。两类生境中大型底栖动物群落结构差异显著。浅滩中大型底栖动物的密度、生物量、丰富度指数、Shannon-Wiener 指数、改进的Shannon-Wiener指数均明显高于深潭。受地貌形态、水力特征和冲淤变化规律影响的生境稳定性和异质性差异是导致大型底栖动物群落差异的主要原因。  相似文献   

19.
20.
The dynamic interactions among nutrients, algae and grazers were tested in a 2 × 3 factorial microcosm experiment that manipulated grazers (Daphnia present or absent) and algal composition (single species cultures and mixtures of an undefended and a digestion-resistant green alga). The experiment was run for 25 days in 10-L carboys under mesotrophic conditions that quickly led to strong phosphorus limitation of algal growth (TP ? 0.5 μM, N:P 40:1). Four-day Daphnia juvenile growth assays tested for Daphnia P-limitation and nutrient-dependent or grazer-induced algal defenses. The maximal algal growth rate of undefended Ankistrodesmus (mean ± SE for three replicate microcosms; 0.92 ± 0.02 day?1) was higher than for defended Oocystis (0.62 ± 0.03 day?1), but by day 6, algal growth was strongly P-limited in all six treatments (molar C:P ratio >900). The P-deficient algae were poor quality resources in all three algal treatments. However, Daphnia population growth, reproduction, and survival were much lower in the digestion-resistant treatment even though growth assays provided evidence for Daphnia P-limitation in only the undefended and mixed treatments. Growth assays provided little or no support for simple threshold element ratio (TER) models that fail to consider algae defenses that result in viable gut passage. Our results show that strong P-limitation of algal growth enhances the defenses of a digestion-resistant alga, favoring high abundance of well-defended algae and energy limitation of zooplankton growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号