首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.  相似文献   

2.
ASchizosaccharomyces pombe homolog of mammalian genes encoding G proteinβ subunits,gpb1 +, was cloned by the polymerase chain reaction using primer pairs that correspond to sequences conserved in several Gβ genes of other species followed by screening of genomic and cDNA libraries. Thegpb1 gene encodes 317 amino acids that show 47% homology with human Gβ 1 and Gβ 2 and 40% homology withSaccharomyces cerevisiae Gβ protein. Disruption of thegpb1 gene indicated that this gene is not required for vegetative cell growth. However,gpb1-disrupted haploid cells mated and sporulated faster than wild-type cells, both in sporulation (MEA) and in complex medium (YE): when examined 23 h after transfer to sporulation medium, 35% ofgpb1-disrupted haploid pairs had undergone conjugation and sporulation, whereas only 3–5% of wild-type haploid pairs had done so. Overexpression of thegpb1 gene suppressed this facilitated conjugation and sporulation phenotype ofgpb1-disrupted cells but did not cause any obvious effect in wild-type cells. Co-disruption of one of the twoS. pombe Gα-subunit genes,gpa2, in thegpb1-disrupted cells did not change the accelerated conjugation and sporulation phenotype of thegpb1 ? cells. However, co-disruption of theras1 gene abolished thegpb1 ? phenotype. These results suggest that Gpbl is a negative regulator of conjugation and sporulation that apparently works upstream of Ras1 function inS. pombe. The possible relationship of Gpbl to two previously identified, putative Gα proteins ofS. pombe is discussed.  相似文献   

3.
4.
5.
We demonstrate that a diffusible factor is secreted by h cells of the fission yeast Schizosaccharomyces pombe, whose mating pheromones have not been described. This factor, tentatively named the h-factor, affects h+ S. pombe cells and induces their elongation under nitrogen-depleted conditions. Circumstantial evidence suggests its physiological significance in the mating process. Despite their sterility, h ras1 cells secrete this factor. However, h+ ras1 cells have apparently lost the ability to respond to it. This may suggest that the gene product of S. pombe ras1, a homologue of mammalian ras oncogenes, is involved in the mechanism for responding to mating pheromones.  相似文献   

6.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

7.
Summary We isolated mutants of Schizosaccharomyces pombe which have deformed cell morphology, are deficient in conjugation and poor in sporulation. This phenotype is characteristic of the ras1 defective mutant previously identified. Tests of the mutants for allelism using cell fusion showed that they define five complementation groups, one of which is ras1 itself. The others are named ral1 through ral4 (ras like). Mutants in ral3 or ral4 conjugate at a very low frequency, while the others apparently do not conjugate at all. Plasmid clones complementing ral1, ral2 or ral3, which apparently carry the respective gene, were isolated from S. pombe genomic libraries. Multiple copies of either the ral2 or the ral3 gene could partially restore mating ability in ral1 strains. Multiple copies of the ras1 gene could partially restore mating ability in ral1 and ral2 strains. These results suggest that the ral1, ral2 and ras1 genes may function in a common pathway in that order. The ral3 gene may influence this pathway. Analysis of these gene products will aid identification of factors which interact with Ras proteins.  相似文献   

8.
Schizosaccharomyces pombe and Saccharomyces cerevisiae are excellent model organisms to study lifespan. We conducted screening to identify novel genes that, when overexpressed, extended the chronological lifespan of fission yeast. We identified seven genes, among which we focused on SPBC16A3.08c. The gene product showed similarity to Ylr150w of S. cerevisiae, which has affinity for guanine-quadruplex nucleic acids (G4). The SPBC16A3.08c product associated with G4 in vitro and complemented the phenotype of an S. cerevisiae Ylr150w deletion mutant. From these results, we proposed that SPBC16A3.08c encoded for a functional homolog of Ylr150w, which we designated ortholog of G4-associated protein (oga1 +). oga1 + overexpression extended the chronological lifespan and also decreased mating efficiency and caused both high and low temperature-sensitive growth. Deleting oga1 + resulted in caffeine-sensitive and canavanine-resistant phenotypes. Based on these results, we discuss the function of Oga1 on the chronological lifespan of fission yeast.  相似文献   

9.
The DHH1 gene in the yeast Saccharomyces cerevisiae encodes a putative RNA helicase of remarkable sequence similarity to several other DExD/H-box proteins, including Xp54 in Xenopus laevis and Ste13p in Schizosaccharomyces pombe. We show here that over-expression of Xp54, an integral component of the stored messenger ribonucleoprotein (mRNP) particles, can rescue the loss of Dhh1p in yeast. Localization and sedimentation studies showed that Dhh1p exists predominantly in the cytoplasm and is present in large complexes whose sizes appear to vary according to the growth stage of the cell culture. In addition, deletion of dhh1, when placed in conjunction with the mutant dbp5 and ded1 alleles, resulted in a synergistically lethal effect, suggesting that Dhh1p may have a role in mRNA export and translation. Finally, similar to Ste13p, Dhh1p is required for sporulation in the budding yeast. Taken together, our data provide evidence that the functions of Dhh1p are conserved through evolution.  相似文献   

10.
Glycosylphosphatidylinositol (GPI)-anchored proteins are essential for normal cellular morphogenesis and have an additional role in mediating cross-linking of glycoproteins to cell wall glucan in yeast cells. Although many GPI-anchored proteins have been characterized in Saccharomyces cerevisiae, none have been reported for well-characterized GPI-anchored proteins in Schizosaccharomyces pombe to date. Among the putative GPI-anchored proteins in S. pombe, four α-amylase homologs (Aah1p-Aah4p) have putative signal sequences and C-terminal GPI anchor addition signals. Disruption of aah3 + resulted in a morphological defect and hypersensitivity to cell wall-degrading enzymes. Biochemical analysis showed that Aah3p is an N-glycosylated, GPI-anchored membrane protein localized in the membrane and cell wall fractions. Conjugation and sporulation were not affected by the aah3 + deletion, but the ascal wall of aah3Δ cells was easily lysed by hydrolases. Expression of aah3 alleles in which the conserved aspartic acid and glutamic acid residues required for hydrolase activity were replaced with alanine residues failed to rescue the morphological and ascal wall defects of aah3Δ cells. Taken together, these results indicate that Aah3p is a GPI-anchored protein and is required for cell and ascal wall integrity in S. pombe.  相似文献   

11.
The pheromone-responsive Gβ subunit of Saccharomyces cerevisiae (encoded by STE4) is rapidly phosphorylated at multiple sites when yeast cells are exposed to mating pheromone. It has been shown that a mutant form of Ste4 lacking residues 310–346, ste4Δ310–346, cannot be phosphorylated, and that its expression leads to defects in recovery from pheromone stimulation. Based on these observations, it was proposed that phosphorylation of Ste4 is associated with an adaptive response to mating pheromone. In this study we used site-directed mutagenesis to create two phosphorylation null (Pho?) alleles of STE4: ste4-T320?A/S335A and ste4-T322 A/S335A and ste4-T322A/S335A. When expressed in yeast, these mutant forms of Ste4 remained unphosphorylated upon pheromone stimulation. The elimination of Ste4 phosphorylation has no discernible effect on either signaling or adaptation. In addition, disruption of the FUS3 gene, which encodes a pheromone-specific MAP kinase, leads to partial loss of pheromone-induced Ste4 phosphorylation. Two-hybrid analysis suggests that the ste4Δ310–346 deletion mutant is impaired in its interaction with Gpa1, the pheromone-responsive Gα of yeast, whereas the Ste4-T320A/S335A mutant has normal affinity for Gpa1. Taken together, these results indicate that pheromone-induced phosphorylation of Ste4 is not an adaptive mechanism, and that the adaptive defect exhibited by the 310–346 deletion mutant is likely to be due to disruption of the interaction between Ste4 and Gpa1.  相似文献   

12.
Karen C. Cole 《FEBS letters》2009,583(20):3339-3262
Targeting of Saccharomyces cerevisiae Cdc24p to polarized growth sites is essential for its function. Localization of GFP-tagged Cdc24 proteins or fragments was assayed in deletion mutants of Cdc24p-interacting proteins. The boi2Δ, ent2Δ, and hua1Δ mutants showed localization defects. The tos2Δ skg6Δ double mutant displayed aberrant pre-anaphase localization to the mother-bud neck region. The same aberrant pattern was seen when potential phosphorylation sites Ser697, Thr704, and Tyr200 were mutated. The S697A mutation also resulted in phosphorylation defects in vivo. These data support roles for Boi2p, Ent2p, Hua1p, Tos2p, and for Cdc24p phosphorylation in targeting Cdc24p to growth sites.  相似文献   

13.
14.
Guanine Exchange Factor (GEF) activity for Ras proteins has been associated with a conserved domain in Cdc25p, Sdc25p in Saccharomyces cerevisiae and several other proteins recently found in other eukaryotes. We have assessed the structure-function relationships between three different members of this family in S. cerevisiae, Cdc25p, Sdc25p and Bud5p. Cdc25p controls the Ras pathway, whereas Bud5p controls bud site localization. We demonstrate that the GEF domain of Sdc25p is closely related to that of Cdc25p. We first constructed a thermosensitive allele of SDC25 by specifically altering amino acid positions known to be changed in the cdc25-1 mutation. Secondly, we constructed three chimeric genes from CDC25 and SDC25, the products of which are as active in the Ras pathway as are the wild-type proteins. In contrast, similar chimeras made between CDC25 and BUD5 lead to proteins that are inactive both in the Ras and budding control pathways. This difference in the ability of chimeric proteins to retain activity allows us to define two subclasses of structurally different GEFs: Cdc25p and Sdc25p are Ras-specific GEFs, and Bud5p is a putative GEF for the Rsr1/Bud1 Rap-like protein.  相似文献   

15.
The pmd1 +, a multidrug resistance gene of the fission yeast Schizosaccharomyces pombe, encodes a protein similar to the budding yeast Saccharomyces cerevisiae STE6 gene product and mammalian P-glycoproteins. The STE6 protein is a membrane transporter of a-factor, a mating pheromone of a-type S. cerevisiae, which is structurally related to M-factor of the fission yeast. However, heterothallic or homothallic pmd1 null mutant cells of S. pombe, which were constructed by means of gene disruption, showed no significant decrease in the mating abilities. On the other hand, the multidrug resistance conferred by the pmd1 + was overcome by the treatment with verapamil, a typical inhibitor of mammalian P-glycoproteins. These results indicate that the pmd1 + gene product is functionally similar to mammalian P-glycoproteins, rather than to the budding yeast STE6.  相似文献   

16.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

17.
Model organisms such as budding yeast, worms and flies have proven instrumental in the discovery of genetic determinants of aging, and the fission yeast Schizosaccharomyces pombe is a promising new system for these studies. We devised an approach to directly select for long-lived S. pombe mutants from a random DNA insertion library. Each insertion mutation bears a unique sequence tag called a bar code that allows one to determine the proportion of an individual mutant in a culture containing thousands of different mutants. Aging these mutants in culture allowed identification of a long-lived mutant bearing an insertion mutation in the cyclin gene clg1 +. Clg1p, like Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate that Pef1p controls lifespan through the downstream protein kinase Cek1p. While Pef1p is conserved as Pho85p in Saccharomyces cerevisiae, and as cdk5 in humans, genome-wide searches for lifespan regulators in S. cerevisiae have never identified Pho85p. Thus, the S. pombe system can be used to identify novel, evolutionarily conserved lifespan extending mutations, and our results suggest a potential role for mammalian cdk5 as a lifespan regulator.  相似文献   

18.
Belotti F  Tisi R  Paiardi C  Groppi S  Martegani E 《FEBS letters》2011,585(24):3914-3920
In Saccharomyces cerevisiae the Cdc25/Ras/cAMP pathway is involved in cell growth and proliferation regulation. Ras proteins are regulated by Ira1/2 GTPase activating proteins (GAPs) and Cdc25/Sdc25 guanine nucleotide exchange factors (GEFs).Most of cytosolic Cdc25 protein was found on internal membranes in exponentially growing cells, while upon incubation in a buffer with no nutrients it is re-localized to plasma membrane. The overexpression of Tpk1 PKA catalytic subunit also induces Cdc25 export from the nucleus, involving two serine residues near the Nuclear Localization Site (NLS): mutation of Ser825 and Ser826 to glutamate is sufficient to exclude physiologically expressed Cdc25 from the nucleus, mimicking Tpk1 overproduction effect. Mutation of these Ser residues to Ala abolishes the effect of nuclear export induced by Tpk1 overexpression on a Cdc25eGFP fusion. Moreover, mutation of these residues affects PKA-related phenotypes such as heat shock resistance, glycogen content and cell volume.  相似文献   

19.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42?kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号