首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
2.
3.
4.
Sequence variation in transcription factor IIIA   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

5.
In humans and mice, the Cys2His2 zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys2His2 zinc fingers to predict nucleotide binding motifs for all Cys2His2 zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.  相似文献   

6.
7.
8.
Species variation in transcription factor IIIA   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

9.
10.
11.
12.
13.
K E Joho  M K Darby  E T Crawford  D D Brown 《Cell》1990,61(2):293-300
A 5S RNA binding protein (p43) in Xenopus is a major constituent of oocytes and comprises part of a 42S ribonucleoprotein storage particle. We have cloned and sequenced p43 cDNA from X. laevis and X. borealis as well as the cDNA for X. borealis TFIIIA. Like TFIIIA, p43 has nine zinc fingers, seven of which are exactly the same size as their counterparts in TFIIIA. Amino acid homology between the two proteins is restricted mainly to conserved residues characteristic of zinc fingers. In contrast to TFIIIA, which binds specifically to both 5S RNA and 5S RNA genes, p43 binds exclusively to 5S RNA.  相似文献   

14.
15.
16.
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.  相似文献   

17.
18.
19.
20.
Ml4 protein from Mesorhizobium loti has a 58% sequence identity with the Ros protein from Agrobacterium tumefaciens that contains a prokaryotic Cys2His2 zinc finger domain. Interestingly, Ml4 is a zinc-lacking protein that does not contain the Cys2His2 motif and is able to bind the Ros DNA target sequence with high affinity. Here we report the 1H, 15N and 13C NMR assignments of the Ml4 protein DNA binding domain (residue 52–151), as an important step toward elucidating at a molecular level how this prokaryotic domain can overcome the metal requirement for proper folding and DNA-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号