首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1997,192(1):63-70
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.  相似文献   

2.
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.  相似文献   

3.
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.  相似文献   

4.
Summary Vibrio cholerae strains of the 01 serotype have been classified into three subclasses, Ogawa, Inaba and Hikojima, which are associated with the O-antigen of the lipopolysaccharide (LPS). The DNA encoding the biosynthesis of the O-antigen, the rfb locus, has been cloned and analysed (Manning et al. 1986; Ward et al. 1987). Transposon mutagenesis of the Inaba and Ogawa strains of V. cholerae, using Tn5 or Tn2680 allowed the isolation of a series of independent mutants in each of these serotypes. Some of the insertions were mapped to the rfb region by Southern hybridization using the cloned rfb DNA as a probe, confirming this location to be responsible for both O-antigen production and serotype specificity. The other insertions allowed a second region to be identified which is involved in V. cholerae LPS biosynthesis.  相似文献   

5.
The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the DeltatcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein of the TCP biogenesis apparatus. Using metal affinity pull-down experiments, we demonstrated interaction between TcpT and TcpR. Using Escherichia coli as a heterologous system, we investigated direct interaction between TcpR and TcpT. We report that TcpR is sufficient for TcpT IM localization per se; however, stable IM localization of TcpT requires an additional V. cholerae-specific factor(s). A LexA-based two-hybrid system was utilized to define interaction domains of the two proteins. We demonstrate a strong interaction between the cytoplasmic domain of TcpR and the N-terminal 100 amino acid residues of TcpT. We also demonstrated the ability of the C-terminal domain of TcpT to multimerize.  相似文献   

6.
《Gene》1997,192(1):79-85
Several experimental approaches have provided evidence suggesting that a domain within the C-terminal region of the TcpA pilin, delineated by the single disulfide loop, is directly responsible for the colonization function mediated by the toxin coregulated pilus (TCP) of Vibrio cholerae. This evidence includes the mapping of domains recognized by protective monoclonal antibodies to this region, the ability of peptides from within this region to elicit cholera protective antibody, the construction of tcpA missense mutations that abolish TCP function, and the requirement of a periplasmic disulfide isomerase to produce functional TCP.  相似文献   

7.
The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 310-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 310-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.  相似文献   

8.
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65°C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.  相似文献   

9.
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.  相似文献   

10.
Vibrio cholerae relies on two main virulence factors—toxin-coregulated pilus (TCP) and cholera toxin—to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.  相似文献   

11.
Vibrio cholerae is the causative agent of the severe enteric disease cholera. To cause cholera the bacterium must be able to synthesize both cholera toxin (CT) and toxin-coregulated pilus (TCP) which mediates autoagglutination and is required for colonization of the small intestine. Only a few environmental signals have been shown to regulate V. cholerae virulence gene expression. Polyamines, which are ubiquitous in nature, and have been implicated in regulating virulence gene expression in other bacteria, have not been extensively studied for their effect on V. cholerae virulence properties. The objective of this study was to test the effect of several polyamines that are abundant in the human intestine on V. cholerae virulence properties. All of the polyamines tested inhibited autoagglutination of V. cholerae O1 classical strain in a concentration dependent manner. Putrescine and cadaverine decreased the synthesis of the major pilin subunit, TcpA, spermidine increased its production, and spermine had no effect. Putrescine and spermidine led to a decrease and increase, respectively, on the relative abundance of TCP found on the cell surface. Spermine led to a small reduction in cholera toxin synthesis whereas none of the other polyamines had an effect. The polyamines did not affect pili bundling morphology, but caused a small reduction in CTXφ transduction, indicating that the TCP present on the cell surface may not be fully functional. We hypothesize the inhibition of autoagglutination is likely to be caused by the positively charged amine groups on the polyamines electrostatically disrupting the pili-pili interactions which mediate autoagglutination. Our results implicate that polyamines may have a protective function against colonization of the small intestine by V. cholerae.  相似文献   

12.
Vibrio cholerae O1 employs the ATP-binding cassette (ABC) transporter-dependent pathway for O antigen biosynthesis. Different from highly studied Klebsiella pneumoniae and Escherichia coli, it was reported that initial reaction of O antigen biosynthesis in V. cholerae O1 may be involved in WbeW protein, which is predicted to be a galactosyltransferase. In this work, we report expression and characterization of WbeW enzyme. WbeW was expressed as membrane-associated form in E. coli and it was obtained with high purity. The enzyme had a function of transferring Gal-1-P from UDP-Gal to Und-P, implying that initial glycan of O antigen in V. cholerae O1 can be composed of a Gal residue.  相似文献   

13.
The toxin-co-regulated pilus (TCP), a type 4 pilus that is expressed by epidemic strains of Vibrio cholerae O1 and O139, is required for colonization of the human intestine. The TCP structure is assembled as a polymer of repeating subunits of TcpA pilin that form long fibres, which laterally associate into bundles. Previous passive immunization studies have suggested that the C-terminal region of TcpA is exposed on the surface of the pilus fibre and has a critical role in mediating the colonization functions of TCP. In the present study, we have used site-directed mutagenesis to delineate two domains within the C-terminal region that contribute to TCP structure and function. Alterations in the first domain, termed the structural domain, result in altered pilus stability or morphology. Alterations in the second domain, termed the interaction domain, affect colonization and/or infection by CTX-bacteriophage without affecting pilus morphology. In vitro and in vivo analyses of the tcpA mutants revealed that a major function of TCP is to mediate bacterial interaction through direct pilus-pilus contact required for microcolony formation and productive intestinal colonization. The importance of this function is supported by the finding that intragenic suppressor mutations that restore colonization ability to colonization-deficient mutants simultaneously restore pilus-mediated bacterial interactions. The alterations resulting from the suppressor mutations also provide insight into the molecular interactions between pilin subunits within and between pilus fibres.  相似文献   

14.
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Δalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. 1H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.  相似文献   

15.
16.
Ralstonia solanacearum causes deadly wilting on many crops worldwide. However, the information on its components important for cell integrity and interactions with phages is limited. By systematically characterizing mutants resistant to a T7-like phage, we showed that the biosynthesis of rough lipopolysaccharides (R-LPS) was crucial for maintaining the membrane integrity, while the production of smooth LPS (S-LPS) was required for the resistance to polymyxin B and phage adsorption. Furthermore, RSc0154/ampG disruption did not affect LPS production and phage adsorption but may have caused aberrant release of peptidoglycan fragments, thus hindering phage DNA injection into or virion release from the cell. Mutations in the RSc2958RSc2962/mla cluster, although not affecting LPS production, may have caused elevated phospholipid level in the outer leaflet of the outer membrane, consequently sheltering the mutants from phage adsorption on the O-antigen. These results specify important roles of the biogenesis and homeogenesis of envelope components for R. solanacearum-phage interaction.  相似文献   

17.
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera‐like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co‐regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β‐sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side‐chains at one end and structural homology to the pore‐forming proteins perfringolysin O and α‐haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.  相似文献   

18.
《Gene》1996,170(1):9-16
A physical map has been constructed of the 5-kb XbaI fragment encoding the promoter proximal of region the tcp gene cluster encoding the toxin-coregulated pilus (TCP) of Vibrio cholerae. This fragment contains the major regulatory regions for TCP. Comparison of the nucleotide (nt) sequences from strains of the classical and E1 Tor biotypes demonstrates that the regions are essentially identical, with several notable exceptions. The intergenic regions, between tcpI and tcpP, and between tcpH and tcpA, show significant sequence divergence which may account for the biotype-related differences in TCP, since this is the location of the major promoter sequences. The C-terminal coding regions of the major pilin subunit, TcpA, also differ. Southern hybridization analyses suggest that the tcpA nt sequence is conserved within a biotype, and Western blot analysis suggests that the two forms of TcpA are antigenically different, but related. Besides tcpA, tcpB, tcpH and tcpI, the genes encoding two additional proteins, TcpP and TcpQ, but not previously defined, were also identified. TcpH and TcpI have been previously suggested to be regulatory proteins but homology data imply that TcpI is a methyl-accepting chemotaxis protein (MCP), as recently reported [Harkey et al., Infect. Immun. 62 (1994) 2669-2678], and TcpH is predicted to be a periplasmic or exported protein. TcpP is thought to be a trans-cytoplasmic membrane (CM) protein which may have a regulatory role  相似文献   

19.
Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXφ, that integrates as a prophage into the V. cholerae chromosome. CTXφ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXφ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXφ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXφ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXφ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXφ converts a harmless marine microbe into a deadly human pathogen.  相似文献   

20.
To study the role of the E. coli recipient cell in conjugation recipient cell mutants deficient in conjugation (Con-) were isolated. Mutants specific for F-type E. coli donor cells (ConF-) and mutants specific deficient in conjugation with I-type donor cells (ConI-) were isolated.Both ConF- and ConI- mutants were blocked in stable mating pair formation. Biochemical analysis of the mutants suggests that the outer membrane protein coded by the ompA gene and LPS are important for recipient activity in F-type conjugation while LPS is important for recipient activity in I-type conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号