首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

2.
3.
Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.  相似文献   

4.
Lactic acid bacteria (LAB) show anti-inflammatory effects, and their genomic DNA was identified as one of the anti-inflammatory components. Despite the differences in anti-inflammatory effects between live LAB dependent not only on genus but also species, this effect has not been compared at the genomic DNA level. We compared the anti-inflammatory effects of the genomic DNA from five Lactobacillus species—Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, and Lactobacillus reuteri—using Caco-2 cells. To evaluate anti-inflammatory effects, decreases in H2O2-induced IL-8 secretion and inhibition of H2O2-induced NF-κB/IκB-α system activation were examined. All LAB genomic DNAs dose-dependently decreased H2O2-induced IL-8 secretion and inhibited H2O2-induced NF-κB/IκB-α system activation. Comparison of these effects between Lactobacillus species showed that the anti-inflammatory effects of L. acidophilus genomic DNA are lower than those of the other species. Furthermore, suppression of Toll-like receptor 9 (TLR9), a specific receptor of bacterial DNA, expression by RNAi abolished the decrease of H2O2-induced IL-8 secretion and inhibition of H2O2-induced NF-κB/IκB-α system activation by LAB genomic DNA. Our results demonstrated that the anti-inflammatory effects of genomic DNA differ between Lactobacillus species and TLR9 is one of the major pathways responsible for the anti-inflammatory effect of LAB genomic DNA.  相似文献   

5.
In this study, 23 samples of traditional wines produced in Southern Italy were subjected to microbiological analyses with the aim to identify and biotype the predominant species of lactic acid bacilli. For this purpose, a multiple approach, consisting in the application of both phenotypic (API 50CHL test) and biomolecular methods (polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing) was used. The results showed that Lactobacillus plantarum was the predominant species, whereas Lb. brevis was detected in lower amount. In detail, out of 80 isolates 58 were ascribable to Lb. plantarum and 22 to Lb. brevis. Randomly amplified polymorphic DNA-polymerase chain reaction was used to highlight intraspecific variability among Lb. plantarum strains. Interestingly, the cluster analysis evidenced a relationship between different biotypes of Lb. plantarum and their origin, in terms of wine variety. Data acquired in this work show the possibility to obtain several malolactic fermentation starter cultures, composed by different Lb. plantarum biotypes, for their proper use in winemaking processes which are distinctive for each wine.  相似文献   

6.
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.  相似文献   

7.
The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.  相似文献   

8.
Eom HJ  Moon JS  Cho SK  Kim JH  Han NS 《Plasmid》2012,67(1):35-43
The pCB42 plasmid from Leuconostoc citreum CB2567, a strain isolated from kimchi, was characterized, and a shuttle vector for Escherichia coli and lactic acid bacteria (LAB) was constructed. The pCB42 plasmid has a circular structure of 4312 bp, a low G + C content, and no single-stranded DNA intermediates during replication, which indicates that pCB42 replicates via the theta-type replication mechanism. In silico analysis of this plasmid revealed 6 open reading frames: 1 transposase gene, 1 DNA-binding gene, 2 putative replication genes, and 2 unknown genes. The fragment encompassing ORF5 contains a functional plasmid replicon. This plasmid was capable of replicating in various LAB, including L. citreum, L. mesenteroides, Lactobacillus plantarum, Lb. reuteri, Lactococcus lactis, Streptococcus thermophilus, Weissella confusa, and Oenococcus oeni. The LAB-E. coli shuttle vector was constructed by ligating pCB42 and pEK104, and the resulting shuttle vector, pLeuCM42, showed a high segregational stability in L. citreum CB2567 after 100 generations of cell division. By using this shuttle vector, the β-gal gene from Lb. plantarum was successfully expressed in the host strain, L. citreum CB2567. The pLeuCM42 shuttle vector can serve as a useful gene-delivery and expression tool for the genetic study or metabolic engineering of various strains of LAB.  相似文献   

9.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

10.
Lactobacillus plantarum WCFS1 requires both heme and menaquinone to induce respiration-like behavior under aerobic conditions. The addition of these compounds enhanced both biomass production, without progressive acidification, and the oxygen consumption rate. When both heme and menaquinone were present, L. plantarum WCFS1 was also able to reduce nitrate. The ability to reduce nitrate was severely inhibited by the glucose levels that are typically found in L. plantarum growth media (1 to 2% [vol/vol] glucose). In contrast, comparable mannitol levels did not inhibit the reduction of nitrate. L. plantarum reduced nitrate with concomitant formation of nitrite and ammonia. Genes that encode a bd-type cytochrome (cydABCD) and a nitrate reductase (narGHJI) were identified in the genome of L. plantarum. The narGHJI operon is part of a cluster of genes that includes the molybdopterin cofactor biosynthesis genes and narK. Besides a menaquinone source, isogenic mutants revealed that cydA and ndh1 are required for the aerobic-respiration-like response and narG for nitrate reduction. The ndh1 mutant was still able to reduce nitrate. The existence of a nonredundant branched electron transport chain in L. plantarum WCFS1 that is capable of using oxygen or nitrate as a terminal electron acceptor is proposed.Lactic acid bacteria (LAB) are extensively used for the production of fermented foods from dairy, meat, fruit, and vegetable sources. These fermented foods are valued for their enhanced shelf life, flavor, and structural properties. LAB have been exploited for this purpose for millennia and generally behave as facultative anaerobic, obligate fermentative bacteria.However, the production of cytochromes, typical constituents of respiratory chains, has been observed in several LAB species when they are grown in the presence of heme. These include Lactococcus lactis (Streptococcus lactis), Leuconostoc mesenteroides, and Enterococcus faecalis (36, 42).Recently, in L. lactis, generation of a proton motive force by a heme-dependent aerobic electron transport chain was demonstrated (9). In other words, heme induces respiration in L. lactis. L. lactis cells grown under these respiration-permissive conditions have enhanced biomass yields and are more robust (more resistant to oxygen, acid, and cold-storage stress) (15, 18, 31). Respiration-like behavior has also been reported for Streptococcus agalactiae and Oenococcus oeni (43; A. Gruss, unpublished results). However, there have been no published reports of heme-induced respiration-like behavior in any member of the genus Lactobacillus. This genus contains many species that are used extensively in food fermentation, such as Lactobacillus plantarum.L. plantarum has been isolated from the human gastrointestinal tract and plant surfaces. It is an economically important starter culture bacterium, to initiate food fermentation, and certain strains are even sold as probiotics (2, 3, 13, 40). Improvements in the efficiency of biomass formation and robustness, which are associated with respiration in L. lactis, are desirable traits for starter cultures, as well as probiotics.In this work, we investigated whether functional electron transport chains are present in L. plantarum. We analyzed the genome for components of electron transport chains and investigated the ability of L. plantarum to exploit extracellular electron acceptors.  相似文献   

11.
12.
Two heme-dependent catalase genes were amplified from genomic DNA of Lactobacillus plantarum WCFS1 (KatE1) and Lactobacillus brevis ATCC 367 (KatE2), respectively, and a manganese-containing superoxide dismutase from Lactobacillus casei MCJΔ1 (MnSOD) were cloned into plasmid pELX1, yielding pELX1-KatE1, pELX1-KatE2 and pELX1-MnSOD, then the recombinant plasmids were transferred into L. casei MCJΔ1. The strains of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were tolerant at 2 mM H2O2. The survival rates of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were 270-fold and 300-fold higher than that of the control strain on a short-term H2O2 exposure, and in aerated condition, the survival cells counts were 146- and 190-fold higher than that of the control strain after 96 h of incubation. Furthermore, L. casei MCJΔ1/pELX1-MnSOD was the best in three recombinants which was superior in the living cell viability during storage when co-storage with Lactobacillus delbrueckii subsp. lactis LBCH-1.  相似文献   

13.
Strains identified in ovine cheese and bryndza by matrix-assisted laser desorption/ionization time-of-flight analysis belonged to ten species of non-enterococcal lactic acid bacteria and included Lactobacillus casei/Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Lactococcus lactis, Pediococcus pentosaceus and Pediococcus acidilactici. The susceptibility toward antibiotics was determined in lactobacilli, lactococci and pediococci and also in Escherichia coli for comparison. Analysis of L. fermentum and pediococci revealed the presence of non-wild-type epidemiological cut-offs in streptomycin, clindamycin or gentamicin. E. coli were resistant to ampicillin, tetracycline, enrofloxacin and florfenicol. No extended spectrum β-lactamases were detected.  相似文献   

14.
Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities.  相似文献   

15.
Lactic acid bacteria (LAB) were isolated from the intestinal tract of the wild clam Meretrix lamarckii caught from the coastal waters of Kashima, Ibaraki, Japan. As many as 415 isolates were obtained using the culture method, of which 70 were considered presumptive LAB strains based on phenotypic tests. Phylogenetic analysis of these presumptive isolates of LAB based on the sequence of the 16S rRNA gene demonstrated that the species belonged to several genera of Lactobacillus, Lactococcus and Pediococcus. Interestingly, however, the species composition was different between the samples in July and October 2010. Further analyses based on the fermentation profiles revealed that the LAB from the clam caught in July 2010 were identified to be Lactobacillus curvatus, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris and Pediococcus pentosaceus, whereas those in October 2010 were identified to be Lactobacillus plantarum, Lactococcus lactis subsp. lactis and P. pentosaceus. The diversity of LAB in the intestinal tract of the clam suggests that the filter feeder bivalves such as M. lamarckii are a rich repository of marine isolates of LAB.  相似文献   

16.
17.
Gundruk is a fermented leafy vegetable and khalpi is a fermented cucumber product, prepared and consumed in the Himalayas. In situ fermentation dynamics during production of gundruk and khalpi was studied. Significant increase in population of lactic acid bacteria (LAB) was found during first few days of gundruk and khlapi fermentation, respectively. Gundruk fermentation was initiated by Lactobacillus brevis, Pediococcus pentosaceus and finally dominated by Lb. plantarum. Similarly in khalpi fermentation, heterofermentative LAB such as Leuconostoc fallax, Lb. brevis and P. pentosaceus initiated the fermentation and finally completed by Lb. plantarum. Attempts were made to produce gundruk and khalpi using mixed starter culture of LAB previously isolated from respective products. Both the products prepared under lab condition had scored higher sensory-rankings comparable to market products.  相似文献   

18.
Lactobacillus plantarum and Lactobacillus pentosus grouped into one protein profile cluster at r ≥ 0.70, separate from Lactobacillus casei, Lactobacillus sake, and Lactobacillus curvatus. Similar sugar fermentation reactions were recorded for representative strains of L. plantarum and L. pentosus. Representative strains, including the type of each species, were selected from the different protein profile clusters and their genetic relatedness determined by using numerical analysis of random amplified polymorphic DNA (RAPD)-PCR. The type strains of L. plantarum (ATCC 14917T) and L. pentosus (NCFB 363T) displayed different RAPD profiles and grouped into two independent clusters, well separated from L. casei, L. curvatus, and L. sake. Numerical analysis of RAPD-PCR proved a reliable and accurate method to distinguish between strains of L. plantarum and L. pentosus.  相似文献   

19.
It was previously shown that the surface (S)-layer proteins covering the cell surface of Lactobacillus crispatus K313 were involved in the adherence of this strain to human intestinal cell line HT-29. To further elucidate the structures and functions of S-layers, three putative S-layer protein genes (slpA, slpB, and slpC) of L. crispatus K313 were amplified by PCR, sequenced, and characterized in detail. Quantitative real-time PCR analysis reveals that slpA was silent under the tested conditions; whereas slpB and slpC, the putative amino acid sequences which exhibited minor similarities to the previously reported S-layer proteins in L. crispatus, were actively expressed. slpB, which was predominantly expressed in L. crispatus K313, was further investigated for its functional domains. Genetic truncation of the untranslated leader sequence (UTLS) of slpB results in a reduction in protein production, indicating that the UTLS contributed to the efficient S-layer protein expression. By producing a set of N- and C-terminally truncated recombinant SlpB proteins in Escherichia coli, the cell wall-binding region was mapped to the C terminus, where rSlpB380–501 was sufficient for binding to isolated cell wall fragments. Moreover, the binding ability of the C terminus was variable among the Lactobacillus species (S-layer- and non-S-layer-producing strains), and teichoic acid may be acting as the receptor of SlpB. To determine the adhesion region of SlpB to extracellular matrix proteins, ELISA was performed. Binding to immobilized types I and IV collagen was observed with the His-SlpB1–379 peptides, suggesting that the extracellular matrix protein-binding domain was located in the N terminus.  相似文献   

20.
Real-time polymerase chain reaction (RT-PCR) was used to quantify seven species of lactic acid bacteria (LAB) in alfalfa silage prepared in the presence or absence of four commercial inoculants and in uninoculated corn stover harvested and stored under a variety of field conditions. Species-specific PCR primers were designed based on recA gene sequences. Commercial inoculants improved the quality of alfalfa silage, but species corresponding to those in the inoculants displayed variations in persistence over the next 96 h. Lactobacillus brevis was the most abundant LAB (12 to 32% of total sample DNA) in all of the alfalfa silages by 96 h. Modest populations (up to 10%) of Lactobacillus plantarum were also observed in inoculated silages. Pediococcus pentosaceus populations increased over time but did not exceed 2% of the total. Small populations (0.1 to 1%) of Lactobacillus buchneri and Lactococcus lactis were observed in all silages, while Lactobacillus pentosus and Enterococcus faecium were near or below detection limits. Corn stover generally displayed higher populations of L. plantarum and L. brevis and lower populations of other LAB species. The data illustrate the utility of RT-PCR for quantifying individual species of LAB in conserved forages prepared under a wide variety of conditions.Disclaimer: Mention of products is for informational purposes only and does not imply a recommendation or warranty by USDA over other products that may also be suitable  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号