首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the quantitation of Coomassie blue-stained proteins in cylindrical polyacrylamide gels is described. It involves an elution of the dye with an 80% methanol solution in a sealed Pyrex tube at 100 degrees C for 3 h and a measurement of its concentration at 585 nm. Using a 6.5% polyacrylamide gel and bovine serum albumin as a protein standard, the curve of absorbance of the dye solution as a function of the amount of protein was observed to be linear up to 30-40 micrograms of protein and as little as 0.8-1.0 micrograms of protein could be measured. The validity of the method was indicated by the values obtained for the relative proportions of the human erythrocyte membrane proteins. Using this method, the color yields of several proteins varying widely with respect to their size, amino acid composition, and carbohydrate content were determined in a 6.5% polyacrylamide gel. The results showed that they were generally the same except for proteins having a high carbohydrate content which were significantly lower.  相似文献   

2.
A method for the quantitative determination of immobilized proteins based on the binding and subsequent elution of Coomassie Blue R is presented. Also presented is a method for the immobilization of proteins in solution by entrapment in polyacrylamide. These entrapped proteins are then available for use in the assay method presented. Other analytical procedures can also be performed on the entrapped proteins, either alone or in combination with the protein quantitation. The dye binding and elution method presented provides a sensitive and, in most applications, rapid method for the quantitative detection of immobilized proteins. Rather than immobilization being an obstacle to the assay method, this approach utilizes the advantages of immobilization for the removal of excess reagents. Application of this approach to several types of immobilized protein are presented.  相似文献   

3.
A procedure was developed for the quantitation of solubilized proteins using the Bradford assay in the presence of glucopyranoside detergents. These detergents solubilized membrane-bound proteins with minimal background absorbance at 595 nm. Absorbance at 650 nm was also low, indicating that these detergents do not significantly stabilize the neutral species of Coomassie brilliant blue G-250 that produces interference in the presence of other detergents. Hexyl-beta-D-glucopyranoside produced less absorbance than did larger glucopyranosides, and the increase in its absorbance at 595 nm in the presence of dye reagent was related linearly to its concentration from 0 to 2%. Absorbance produced by membrane-bound protein was increased by the presence of up to 0.2% hexyl-beta-D-glucopyranoside (final concentration in dye reagent) and then remained stable up to 1%, indicating that these concentrations of this detergent allowed membrane-bound proteins to react completely with the dye reagent. Standard curves of several proteins were similar in the absence or presence of 0.1-0.5% hexyl-beta-D-glucopyranoside. The quantitation of both soluble and membrane-bound proteins by the Bradford assay was similar in the presence of 0.2% hexyl-, heptyl-, and octyl-beta-D-glucopyranoside. Estimates of membrane-bound protein by this assay agreed with estimates obtained with the Lowry assay and with quantitative amino acid analysis. This procedure requires no extra steps; thus, it is as rapid and convenient as the original Bradford protein assay.  相似文献   

4.
We describe a reversible staining technique, using MemCode, a reversible protein stain by which proteins can be visualized on nitrocellulose and polyvinylidine fluoride (PVDF) membranes without being permanently fixed to the membrane itself. This allows subsequent immunoblot analysis of the proteins to be performed. The procedure is applicable only to protein blots on nitrocellulose and PVDF membranes. MemCode is a reversible protein stain composed of copper as a part of an organic complex that interacts noncovalently with proteins. MemCode shows rapid protein staining, taking 30s to 1 min for completion. The method is simple and utilizes convenient application conditions that are compatible with the matrix materials and the protein. The stain is more sensitive than any previously described dye-based universal protein staining system. The turquoise-blue-stained protein bands do not fade with time and are easy to photograph compared to those stained with Ponceau S. Absorbance in the blue region of the spectrum offers good properties for photo documentation and avoids interference from common biological chromophores. The stain on the protein is easily reversible in 2 min for nitrocellulose membrane and in 10 min for PVDF membrane with MemCode stain eraser. The stain is compatible with general Western blot detection systems, and membrane treatment with MemCode stain does not interfere with conventional chemiluminescent or chromogenic detection using horseradish peroxide and alkaline phosphatase substrates. The stain is also compatible with N-terminal sequence analysis of proteins.  相似文献   

5.
Electroblotted proteins noncovalently bound to polyvinylidene difluoride (PVDF) membranes are typically sequenced using adsorptive sequencer protocols (gas-phase or pulsed-liquid) that do not require a covalent linkage between protein and surface. We have developed simple chemical protocols where proteins are first electroblotted onto unmodified PVDF membranes, visualized with common protein stains, and then immobilized for solid-phase sequence analysis. Adsorbed, stained proteins are first treated with phenylisothiocyanate (PITC) to modify alpha and epsilon amines. The protein is then overlayed with a solution of 1,4-phenylene di-isothiocyanate (DITC), followed by a few microliters of a basic solution containing a poly(alkylamine). As the polymer dries onto the surface both polymer and remaining protein amino groups are crosslinked by DITC. The protein is thus immobilized to the membrane surface by entrapment in a thin polymer coating. The coating is transparent to the degradation chemistry, and extensive enough to remain immobilized even in the absence of any covalent link between polymer and surface. Partial modification with PITC allows for identification of N-terminal and internal lysine residues during sequencing. The process was tested with a variety of poly(alkylamines), linear and branched, with molecular weights ranging from 600 to over 100,000. Proteins bound in this manner were successfully sequenced using covalent (solid-phase) sequencer protocols with cycle times as short as 26 min.  相似文献   

6.
A simple and reproducible reversed-phase ion-pair high-performance liquid chromatographic (HPLC) method using isocratic elution with UV absorbance detection is presented for the simultaneous quantitation of mycophenolic acid (MPA) and MPA-glucuronide (MPAG) in human plasma and urine. The sample preparation procedures involved simple protein precipitation for plasma and 10-fold dilution for urine. Each analytical run was completed within 15min, with MPAG and MPA being eluted at 3.8 and 11.4min, respectively. The optimized method showed good performance in terms of specificity, linearity, detection and quantitation limits, precision and accuracy. This assay was demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

7.
A reverse-phase, high-performance liquid chromatographic system (HPLC) is described that makes possible optimal resolution and quantitation of picomole levels of phosphoamino acids, both with or without the presence of a large excess of nonphosphorylated amino acids. The assay involves precolumn derivatization of an amino acid mixture with phenyl isothiocyanate (PITC) at room temperature, followed by separation of phosphoamino acids from other amino acids by HPLC. The liquid chromatography was carried out on a C18 reverse-phase column at pH 7.4 and 30 degrees C using gradient elution with eluent A as 157 mM sodium acetate containing 2% acetonitrile and eluent B as 60% acetonitrile in water. A uv absorption at 254 nm is employed for detection of the PITC-derivatized amino acids eluting from the column. Amino acids are eluted with baseline resolution in the following order: phosphoserine, phosphothreonine, aspartic acid, glutamic acid, and phosphotyrosine followed by other amino acids. The sensitivity is in the picomole range, and the separation time, injection to injection, is 36 min. Phosphoserine, phosphothreonine, and phosphotyrosine are resolved within the first 8 min. This procedure enables determination of as low as 5 pmol of nonradioactive phosphoamino acids in a 100-fold excess of amino acids, as is usually present in most phosphoproteins in the natural state. Phosphoamino acids in polypeptides separated by sodium dodecyl sulfate-polyacrylamide electrophoresis and transferred to polyvinylidene difluoride (PVDF) membrane, or protein samples directly blotted on the membrane, can also be analyzed by this procedure after acid hydrolysis of the proteins bound to the PVDF membrane.  相似文献   

8.
A method for the quantitation of proteins in solution which involves the binding of bromophenol blue to proteins under acidic conditions has been developed. The binding of the dye to proteins is accompanied by the appearance of a strong absorbance at 610 nm, which is almost linear over the range of 10 to 80 μg for the seven proteins studied. The absorbance at 610 nm can be measured immediately after the mixing of the protein and dye solutions and is stable over a period of 8 hr. The method has very few interferences, most of which can be corrected for by the use of proper controls. Phenol, sodium dodecyl sulfate, and Triton X-100 (the last with some error) may be used with this assay at concentrations that produce strong interferences with similar methods using Coomassie brilliant blue G-250.  相似文献   

9.
The most effective protein purification method of low picomole amounts for sequence analysis involves polyacrylamide gel electrophoresis followed by electroblotting to polyvinylidene difluoride (PVDF) membranes. Since a critical factor in this procedure is the protein recovery at the blotting step, different types of PVDF membranes were systematically evaluated for their ability to bind proteins during electrotransfer. Differences in electroblotting recoveries occurred between types of PVDF membranes for some proteins. Some variability persisted even when optimized electroblotting procedures were used which reduce the sodium dodecyl sulfate (SDS) concentration in the gel and improve protein-PVDF binding. The membranes which were evaluated could be grouped as either "high retention" membranes (ProBlott, Trans-Blot, and Immobilon-PSQ) or "low retention" membranes (Immobilon-P and Westran). The high retention membranes showed higher protein recoveries under most conditions tested, especially for small proteins or peptides. These high retention membranes were also less sensitive to the exact electroblotting conditions, especially those factors which affect the amount of SDS present during either electrotransfer or direct adsorption from protein solutions. High retention PVDF membranes are therefore preferred in most cases for optimal protein or peptide recovery prior to direct sequence analysis. In contrast, low retention membranes are preferred for procedures where subsequent extraction of the proteins from the membranes is required. Even under identical conditions, substantial protein-to-protein variation for both adsorption and subsequent extraction is routinely observed for both groups of membranes, indicating that the nature of protein-PVDF interactions is more complex than simple hydrophobic interactions.  相似文献   

10.
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets polyvinylidene difluoride (PVDF) membranes. The detection limit is 0.19 ± 0.04 pmol of carbonyl, and 60 ng of protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila.  相似文献   

11.
A method is described to determine the presence and the relative amount of proteins within specific protein-DNA complexes. The system studied is the LexA repressor from Escherichia coli and its interaction with the operator of the caa gene encoding the bacterial toxin colicin A. After separation of the free and the complexed 32P-labeled DNA on a native polyacrylamide gel, the bound proteins are transferred on a polyvinylidine difluoride (PVDF) membrane after sodium dodecyl sulfate denaturation. Development of the protein on the membrane was achieved on reaction with an anti-LexA antibody and the use of a second anti-antibody crosslinked with alkaline phosphatase. The phosphatase activity is monitored using 5-bromo-4-chloro-3-indolyl phosphate as a substrate and 4-nitroblue tetrazolium salt. A quantitation by densitometry of both the stained protein bands on the PVDF membrane and the DNA on autoradiograms allowed us to assign the relative stoichiometry of the two different complexes formed between LexA and the caa operator. The method should allow unraveling of complicated band shift patterns arising from the presence of several binding sites for a same protein, as in our case, or from the presence of different proteins binding to a same DNA fragment.  相似文献   

12.
Chen SH  Liao HK  Chang CY  Juo CG  Chen JH  Chan SI  Chen YJ 《Proteomics》2007,7(17):3038-3050
Development of a rapid, effective, and highly specific platform for target identification in complex biofluids is one of the most important tasks in proteomic research. Taking advantage of the natural hydrophobic interaction of PVDF with probe protein, a simple and effective method was developed for protein quantitation and profiling. Using antibody-antigen interactions as a proof-of-concept system, the targeted plasma proteins, serum amyloid P (SAP), serum amyloid A (SAA), and C-reactive protein (CRP), could be selectively isolated and enriched from human plasma by antibody-immobilized PVDF membrane and directly identified by MALDI-TOF MS without additional elution step. The approach was successfully applied to human plasma for rapid quantitation and variant screening of SAP, SAA, and CRP in healthy individuals and patients with gastric cancer. The triplexed on-probe quantitative analysis revealed significant overexpression of CRP and SAA in gastric cancer group, consistent with parallel ELISA measurements and pathological progression and prognostic significance reported in previous literatures. Furthermore, the variant mass profiling of the post-translationally modified forms revealed a high occurrence of de-sialic acid SAP in patients with gastric cancer. Due to the versatile assay design, ease of probe preparation without chemical synthesis, and compatibility with MALDI-TOF MS analysis, the methodology may be useful for target protein characterization, functional proteomics, and screening in clinical proteomics.  相似文献   

13.
The influence of different types of polyvinylidene difluoride (PVDF) membranes on gas phase sequence performance has been evaluated. These PVDF membranes have been classified as either high retention (Trans-Blot and ProBlott) or low retention membranes (Immobilon-P) based on their ability to bind proteins during electroblotting from gels. Initial yields, repetitive yields, and extraction efficiency of the anilinothiazolinone amino acid derivatives have been compared for several standard proteins that have been either electroblotted or loaded onto PVDF membranes by direct adsorption. These results show that the major differences in initial sequence yields between membranes arise from differences in the amount of protein actually transferred to the membrane rather than sequencer-related factors. In contrast to several previous observations from other laboratories, more tightly bound proteins do not sequence with lower initial yields and initial yields are not affected by the ratio of surface area to protein. The stronger binding on high retention PVDF membranes does not adversely affect recoveries of difficult to extract, or very hydrophobic, amino acid derivatives. Several amino acids, especially tryptophan, are actually recovered in dramatically higher yield on high retention membranes compared with either Immobilon or glass filters. At the same time, the protein and peptide binding properties of high retention membranes will frequently improve the repetitive yield by minimizing sample extraction during the sequencer cycle. Stronger protein binding together with improved electroblotting yields offer substantially improved sequence performance when high retention PVDF membranes are used.  相似文献   

14.
Coomassie blue staining of gels and blots is commonly employed for detection and quantitation of proteins by densitometry. We found that Coomassie blue or Fast Green FCF bound to protein fluoresces in the near infrared. We took advantage of this property to develop a rapid and sensitive method for detection and quantitation of proteins in gels and on blots. The fluorescence response is quantitative for protein content between 10 ng and 20 microg per band or spot. Staining and destaining require only 30 min, and the method is compatible with subsequent immunodetection.  相似文献   

15.
A simple reversed-phase high-performance liquid chromatography (HPLC) method for the simultaneous determination of caffeine and paraxanthine in human serum is described. Serum proteins are precipitated with perchloric acid and the resulting supernatant neutralized for direct injection onto an HPLC column. The method uses a phosphate–methanol mobile phase (85:15, v/v) at pH 4.9 with a flow-rate of 1.75 ml/min and quantitation is by UV absorbance at 274 nm. Elution times are approximately 18 min for caffeine and 8 min for paraxanthine. Theobromine and theophylline have elution times of 5.4 and 9.4 min and do not interfere in the assay. The intra-assay and between-assay means for precision and accuracy for both drugs are: 4.5% C.V. and 3.3% deviation. The sensitivity of the method is 50 ng/ml for each drug.  相似文献   

16.
SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry.  相似文献   

17.
A method is described for quantitation of protein in the presence of reducing agents, detergents, and other substances which often interfere with assays of protein in solution. The proteins are applied to Whatman No. 1 filter paper, air-dried, washed with methanol, and then stained with Coomassie brilliant blue G. Following destaining, the paper is air-dried and the protein-bound dye is extracted. Sample absorbance measurements are made in a 96-well plate using an automated microplate reader (600-405 nm) or in a cuvette at 610 nm. This filter paper assay is useful for determining 100 ng to 20 micrograms of protein in the presence of ammonium sulfate, urea, thiol-reducing agents, amino acids, DNA, ionic and nonionic detergents, and acid or base.  相似文献   

18.
The quantitative aspects of the disc electrophoretic technique were investigated using a purified protein, egg ovalbumin. Depending on the filter used, a linear relationship between peak area and protein concentration was found up to about 40 μg of protein by densitometry. Both diffusion and gel slicing studies indicated that linearity could be extended to almost 160 μg of protein. By elution of the amido black dye from the protein-dye complex in the gel, a nearly constant dye to protein ratio was indicated. These results suggested that quantitation of the stained bands on polyacrylamide gels was limited by the nonlinear response of the densitometer, perhaps due to the nonlinearity of dye absorbance at large optical densities and not by variable amounts of dye binding to the protein bands.  相似文献   

19.
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) combined with mass spectrometry (MS) is a highly accurate and sensitive means of identifying proteins. We have developed a novel method for digesting proteins on polyvinylidene difluoride (PVDF) membranes for subsequent matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS analysis. After Tricine sodium dodecyl sulfate (SDS)-PAGE, separated proteins were electroblotted onto PVDF membranes in a semidry discontinuous buffer system, visualized by staining with Coomassie Blue, excised, digested with trypsin or lysC in 80% acetonitrile, and then analyzed by MALDI-TOF MS. This method has several advantages over in-gel digestion in terms of sample handling, sensitivity, and time. We identified 105 fmol of Bacillus subtilis SecA and 100 approximately 500 fmol of standard proteins. We also analyzed the submembrane protein fraction solubilized by 1% n-dodecyl-beta-D-maltoside from B. subtilis membranes after separation by 2-D PAGE, and identified 116 protein spots. This method can detect proteins at the 10 approximately 50 fmol level by pooling more than ten identical electroblotted protein spots.  相似文献   

20.
The quantitation of proteins in polyacrylamide gels stained with Fast Green FCF has been investigated using a modification of the elution technique originally described by Fenner et al. (Fenner, C., Traut, R.R., Mason, D.T. and Wikman-Coffelt, J. (1975) Anal. Biochem. 63, 595–602) for Coomassie Blue and adapted by Medugorac (Medugorac, I. (1979) Basic Res. Cardiol. 74, 406–416) for use with proteins stained with Fast Green FCF. The elution of dye from stained protein was accomplished using 1.0 M NaOH instead of aquoeus pyridine as required by the original method. The primary advantages of our modification are that the time required for protein quantitation has been considerably reduced and the use of toxic organic solvents has been eliminated. We have investigated the applicability of the method to several different proteins and our results indicate: (a) The quantity of Fast Green eluted from specific proteins is proportional to the quantity of protein applied to the gel, but varies for each individual protein. (b) The method allows quantitation over a very wide range of protein (1–800 μg). (c) Quantitation of protein is independent of the width of the stained bands as well as acrylamide concentration. (d) The method is applicable to gels of many types including disc, slab and continuous gradient gel, (e) Protein can be estimated from the patterns obtained by two-dimensional polyacrylamide gel electrophoresis. (f) The presence of Triton X-100 in gel and protein sample does not affect quantitation; the method is applicable to gels containing SDS provided that SDS is removed prior to staining. (g) Precipitation of protein with 12.5% TCA following electrophoresis does not interfere with quantitation. (h) The reproducibility of the technique is excellent, with standard deviations being less than 10% of the mean in all cases. This method appears highly versatile but requires appropriate standards for the quantitation of individual proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号