首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.  相似文献   

3.
To study the role of the biochemical and physiological activities of simian virus 40 (SV40) large T antigen in the lytic and transformation processes, we have analyzed DNA replication-defective, transformation-competent T-antigen mutants. Here we describe two such mutants, C8/SV40 and T22/SV40, and also summarize the properties of all of the mutants in this collection. C8/SV40 and T22/SV40 were isolated from C8 and T22 cells (simian cell lines transformed with UV-irradiated SV40). Early regions encoding the defective T antigens were cloned into a plasmid vector to generate pC8 and pT22. The mutations responsible for the defects in viral DNA replication were localized by marker rescue, and subsequent DNA sequencing revealed missense and one nonsense mutation. The T22 mutation predicts a change of histidine to glutamine at residue 203. C8 has two mutations, one predicts lysine224 to glutamamic acid and the other changes the codon for glutamic acid660 to a stop codon; therefore, C8 T antigen lacks the 49 carboxy-terminal amino acids. pC8A and pC8B were constructed to contain the C8 mutations separately. Plasmids pT22, pC8, pC8A, and pC8B were able to transform primary rodent cell cultures. T22 T antigen is defective in binding to the SV40 origin. C8B (49-amino-acid truncation) is a host-range mutant defective in a late function in CV-1 but not BSC cells. Analysis of T antigens in mutant SV40-transformed mouse cells suggests that the replicative function of T antigen is important in generating SV40 DNA rearrangements that allow the expression of "100K" variant T antigens in the transformants.  相似文献   

4.
Two lines of immortal human fibroblasts were isolated following transfection of TIG-3 cells with plasmid DNA, pMT-1ODtsA, that contained SV40 early gene with a deletion in replication origin and ts mutation in coding sequence for T-antigen. These cells continued proliferation at 34 degrees C, over 565 population doubling level (PDL) which is far over the limited division potential of untransformed normal TIG-3 of 70-80 PDL. When the culture temperature was shifted to 40 degrees C after 70 PDL, they ceased proliferation immediately. One of these immortal clones, SVts8, lost its ts phenotype after retransformation with wtT-antigen gene. These results indicated that the function of intact T-antigen is required for maintenance of immortal proliferation, at least in one of the SV40 transformed immortal clones.  相似文献   

5.
Functional analysis of a simian virus 40 super T-antigen.   总被引:15,自引:8,他引:7       下载免费PDF全文
The SV3T3 C120 line of simian virus 40-transformed mouse cells synthesizes no large T-antigen of molecular weight 94,000 but instead a super T-antigen of molecular weight 145,000. In the accompanying paper (Lovett et al., J. Virol. 44:963-973, 1982), we showed that the integrated viral DNA segment SV3T3-20-K contains a perfect, in-phase, tandem duplication of 1.212 kilobases within the large T-antigen coding sequences. Our data suggested that this integrated template encodes mRNAs of 3.9 and 3.6 kilobases, the smaller of which directs the synthesis of the super T-antigen of molecular weight 145,000. We transfected the DNA segment SV3T3-20-K into nonpermissive rat cells and into TK- mouse L cells and analyzed the T-antigens and viral mRNAs in the transfectants; these data prove directly the coding assignments suggested previously. The super T-antigen retained the ability to induce morphological transformation, and may even transform better than the wild-type protein. It also retained the ability to bind to the cell-coded p53 protein. Transfection into permissive CV-1 cells showed that the super T-antigen encoded by SV3T3-20-K was incapable of initiating DNA replication at the viral origin. The duplication in SV3T3-20-K thus defines a mutation which separates the transformation and DNA replication functions of large T-antigen. We discuss why such mutations may be selected in transformed cells.  相似文献   

6.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

7.
Three simian virus 40 (SV40)-transformed monkey cell lines, C2, C6, and C11, producing T-antigen variants that are unable to initiate viral DNA replication, were analyzed with respect to their affinity for regulatory sequences at the viral origin of replication. C2 and C11 T antigens both bound specifically to sequences at sites 1 and 2 at the viral origin region, whereas C6 T antigen showed no specific affinity for any viral DNA sequences under all conditions tested. Viral DNA sequences encoding the C6 T antigen have recently been cloned out of C6 cells and used to transform an established rat cell line. T antigen from several cloned C6-SV40-transformed rat lines failed to bind specifically to the origin. C6 DNA contains three mutations: two located close to the amino terminus of T antigen at amino acid positions 30 and 51 and a third located internally at amino acid position 153. Two recombinant SV40 DNA mutants were prepared containing either the amino-terminal mutations at positions 30 and 51 (C6-1) or the internally located mutation at position 153 (C6-2) and used to transform Rat 2 cells. Whereas T antigen from C6-2-transformed cells lacked any specific affinity for these sequences. Therefore, the single mutation at amino acid position 153 (Asn leads to Thr) is sufficient to abolish the origin-binding property of T antigen. A T antigen-specific monoclonal antibody, PAb 100, which had been previously shown to immunoprecipitate an immunologically distinct origin-binding subclass of T antigen, recognized wild-type or C6-1 antigens, but failed to react with C6 or C6-2 T antigens. These results indicate that viral replication function comprises properties of T antigen that exist in addition to its ability to bind specifically to the SV40 regulatory sequences. Furthermore, it is concluded from these data that specific viral origin binding is not a necessary feature of the transforming function of T antigen.  相似文献   

8.
Events preceding stable integration of SV40 genomes in a human cell line   总被引:2,自引:0,他引:2  
We have examined the organization of integrated SV40 sequences in an uncloned population of a transformed human fibroblast cell line. Somatic cell hybrids between mouse B82 cells and human GM847 cells were examined for SV40 T-antigen expression and individual human chromosome presence. This analysis revealed that a functional SV40 genome is located on human chromosome 7. Restriction endonuclease digestion followed by blot hybridization of the parental human cell line revealed that it contains multiple normal and defective SV40 copies integrated into the host genome in tandem. A similar analysis of several T-ag+ hybrid cell lines indicated that the integrated viral sequences in different hybrid cell lines (thus in different cells of the original population) are very closely related but not always identical. Analysis of subclones of GM847 also revealed such differences. Based upon these results, we postulate that following the initial integration event, viral as well as the flanking host DNA sequences become unstable and are subject to deletions and rearrangements. This short-lived structural instability is followed by highly stable integration of SV40 which is maintained in these cells or their hybrid derivatives for at least hundreds of cell generations.  相似文献   

9.
A mutant was isolated which demonstrates that the transforming activity of simian virus 40 large T-antigen is separable from its function in viral DNA replication. The mutant, SVR9D, is nonconditionally defective for viral DNA synthesis, but competent at wild-type level for morphological transformation of cultured rat cells. The lytic growth defect in SVR9D is complemented by the simian virus 40 A gene product present in the transformed CV1 cell line, COS1. The lesion in SVR9D DNA was mapped genetically by marker rescue of plaque formation and localized to a 214-base-pair segment of the viral genome bounded by nucleotide numbers 4100 and 4314. DNA sequence analysis showed the mutation to be an adenine-to-guanine transition at nucleotide number 4178. This change predicts a lysine-to-glutamic acid amino acid change at residue number 214 of the mutant large T-antigen polypeptide.  相似文献   

10.
The origin-defective simian virus 40 (SV40) mutant 6-1 has been useful in transforming human cells (Small et al., Nature [London] 296:671-672, 1982; Nagata et al., Nature [London] 306:597-599, 1983). However, the low efficiency of transformation achieved by DNA transfection is a major drawback of the system. To increase the efficiency of SV40-induced transformation of human fibroblasts, we used recombinant adenovirus-SV40 virions which contain a complete SV40 early region including either a wild-type or defective (6-1) origin of replication. The SV40 DNA was cloned into the adenovirus vector in place of early region 1. Cell lines transformed by viruses containing a functional origin of replication produced free SV40 DNA. These cell lines were subcloned, and some of the subclones lost the ability to produce free viral DNA. Subclones that failed to produce free viral DNA were found to possess a mutated T antigen. Cell lines transformed by viruses containing origin-defective SV40 mutants did not produce any free DNA. Because of the high efficiency of transformation, we suggest that the origin-defective chimeric virus is a convenient system for establishing SV40-transformed cell lines from any human cell type that is susceptible to infection by adenovirus type 5.  相似文献   

11.
We covalently bound periodate-oxidized ATP (oATP) to purified simian virus 40 (SV40) large T-antigen and determined the effect of this modification on viral DNA replication and three other biochemical activities of T-antigen. The oATP bound specifically to T-antigen, inhibiting the ATPase activity and preventing T-antigen from activating SV40 DNA replication in vitro. In contrast, binding of oATP had no effect on the DNA-binding activity of T-antigen nor on its ability to form a complex with DNA polymerase alpha. These results provide direct biochemical evidence suggesting that the T-antigen ATPase activity is necessary for viral DNA replication.  相似文献   

12.
13.
Integrase function is required for retroviral replication in most instances. Although certain permissive T-cell lines support human immunodeficiency virus type 1 (HIV-1) replication in the absence of functional integrase, most cell lines and primary human cells are nonpermissive for integrase mutant growth. Since unintegrated retroviral DNA is lost from cells following cell division, we investigated whether incorporating a functional origin of DNA replication into integrase mutant HIV-1 might overcome the block to efficient gene expression and replication in nonpermissive T-cell lines and primary cells. Whereas the Epstein-Barr virus (EBV) origin (oriP) did little to augment expression from an integrase mutant reporter virus in EBV nuclear antigen 1-expressing cells, simian virus 40 (SV40) oriT dramatically enhanced integrase mutant infectivity in T-antigen (Tag)-expressing cells. Incorporating oriT into the nef position of a full-length, integrase-defective virus strain yielded efficient replication in Tag-expressing nonpermissive Jurkat T cells without reversion to an integration-competent genotype. Adding Tag to integrase mutant-oriT viruses yielded 11.3-kb SV40-HIV chimeras that replicated in Jurkat cells and primary monocyte-derived macrophages. Real-time quantitative PCR analyses of Jurkat cell infections revealed that amplified copies of unintegrated DNA likely contributed to SV40-HIV integrase mutant replication. SV40-based HIV-1 integrase mutant replication in otherwise nonpermissive cells suggests alternative approaches to standard integrase-mediated retroviral gene transfer strategies.  相似文献   

14.
15.
《Gene》1998,211(2):229-234
Shuttle vectors are useful tools for studying DNA replication and mutagenesis. SV40-based shuttle vectors are popular because of their ease of use and quick results. However, one complication with the use of SV40-based shuttle vectors is the interaction of cellular p53 protein with the T-antigen of SV40. Wild-type, but not mutant, p53 has been shown to be involved in DNA replication and DNA repair. To address this concern, we have modified an SV40-based shuttle vector, pZ189, by exchanging the wt T-antigen for a mutant SV40 T-antigen, which is unable to bind with p53. This shuttle vector, pZ402, provides us with a tool to study DNA replication and genomic instability in cells with varying genetic backgrounds without interference from the interaction of T-antigen with p53.  相似文献   

16.
17.
pSV2Neo, a plasmid that contains the wild-type simian virus 40 (SV40) origin of replication (ori), is widely used in mammalian cell transfection experiments. We observed that pSV2Neo transforms two nontumorigenic SV40-immortalized human uroepithelial cell lines (SV-HUC and CK/SV-HUC2) to G418 resistance (G418r) at a frequency lower than that at which it transforms SV-HUC tumorigenic derivatives (T-SV-HUC). Transient expression studies with the chloramphenicol transferase assay showed that these differences could not be explained by differences in Neo gene expression. However, when we replaced the SV40 ori in pSV2Neo with a replication-defective ori to generate G13.1Neo and G13.1'Neo, the G418r transformation frequency of the SV40-immortalized cell lines was elevated. Because SV40 T antigen stimulates replication at its ori, we tested plasmid replication in these transfected cell lines. The immortalized cell lines that showed low G418r transformation frequencies after transfection with pSV2Neo showed high levels of plasmid replication, while the T-SV-HUC that showed high G418r transformation frequencies failed to replicate pSV2Neo. To determine whether differences in the status of the T-antigen gene contributed to the phenomenon, we characterized the T-antigen gene in these cell lines. The results showed that the T-SV-HUC had sustained mutations in the T-antigen gene that would interfere with the ability of the T antigen to stimulate replication at its ori. Most T-SV-HUC contained a super-T-antigen replication-defective ori that apparently resulted from the partial duplication of SV40 early genes, but one T-SV-HUC had a point mutation in the ori DNA-binding domain of the T-antigen gene. These results correlate with the high G418r transformation frequencies with pSV2Neo in T-SV-HUC compared with SV-HUC and CK/SV-HUC2. Furthermore, these results suggest that alterations in SV40 T antigen may be important in stabilizing human cells immortalized by SV40 genes that contain the wild-type SV40 ori, thus contributing to tumorigenic transformation. This is the first report of a super T antigen occurring in human SV40-transformed cells.  相似文献   

18.
Simian cells have been transformed with SV40 origin-defective recombinant plasmids containing the tsA209 T-antigen gene. These plasmids contain deletions of either 5 or 52 nucleotides that include the BglI site at the SV40 ori, are defective for replication in COS-1 cells but retain a functional SV40 early promoter. Two cell lines transformed with these plasmids, U4 and S7, and their respective clonal derivatives E5 and F11, contain the tsA209 T-antigen gene integrated into the cell DNA and express T-antigen as detected by immunoprecipitation and immunofluorescence. These cells behave as ts-COS cells, since they complement in a temperature dependent manner the replication of an SV40 derived recombinant plasmid. When transfected with recombinant plasmids containing the chloramphenicol acetyl transferase (CAT) gene cloned into SV40 replicons, ts-COS cells were able to regulate the induction of the CAT activity by temperature. The ratios of CAT activity observed at permissive versus restrictive temperature were in the range of 20-400. Thus, these ts-COS cells are useful systems for the regulated expression of cloned genes in simian cells.  相似文献   

19.
The organization of viral DNA sequences in several cell lines derived from a primary colony of simian virus 40 (SV40)-transformed mouse cells was analyzed to examine the origin of the various distinctive patterns of SV40 sequence arrangement present in transformed cells. This analysis revealed a complex arrangement of viral sequences in the uncloned transformed cells but simplified arrangements in cloned derivatives of the primary transformant. The cell lines studied had certain SV40 sequence arrangements in common, but the cloned lines had lost some parental arrangements and acquired new arrangements. These results indicate that the arrangement of viral sequences in some SV40-transformed cells is not fixed but that alterations occur after integration, creating a heterogeneous population of transformants. In the process, expression of viral genes may be altered. Possible causes for and implications of this genetic instability are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号