首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect of immobilization in bed on metabolism and function of human blood platelet was studied. Blood platelets taken from patients with bone fractures after long term bed rest (14 days and 28 days) demonstrated significantly reduced concentration of total adenine nucleotides (after 28 days reduction about 30%). This decrease of total platelet adenine nucleotides after immobilization in bed is probably caused by stimulation of platelet secretory process. Thrombin which released from control platelets 58.2% +/- 1.5% of total adenine nucleotides liberated decreased amounts (only 23.1% +/- 3.3% of total) of nucleotides from patient platelets isolated after 28 days of immobilization in bed. Loss of nucleotides from platelets was accompanied by slightly increased extent of platelet aggregation. It is concluded that during bed rest the reactivity of blood platelets (aggregation and release reaction) is stimulated.  相似文献   

2.
The ionophores A 23187 and X-537 A induce an uptake of 45Ca by human blood platelets. They induce the release of adenine nucleotides and of serotonin. A 23187 also induces platelet aggregation and the retraction of a clot formed in platelet-rich plasma by reptilase. These results suggest that an increase of the concentration of Ca2+ in the cytoplasm plays a role in the activation of blood platelets.  相似文献   

3.
1. X537A at concentrations below 10 muM can liberate platelet serotonin from washed human platelets without inducing the platelet release reaction. Up to 100% of serotonin preabsorbed by the platelets can be liberated before initiation of the release reaction. 2. Concentrations of X537A above 10muM initiate the platelet release reaction, with a maximum release of adenine nucleotides and platelet factor 4 antigen comparable to that obtained with 1.25 units thrombin/ml. 3. The changes in ATP metabolism at the concentration necessary for X537A-induced release are more profound than those in platelets exposed to concentrations of thrombin or A23187 giving the same degree of release, and approach those seen with high concentrations of A23187. At concentrations where serotonin is liberated but no adenine nucleotide or platelet factor 4 antigen is released, short time incubation causes no change in the level of metabolic ATP.  相似文献   

4.
The effect of ultraviolet radiation (UV-A, 360 nm) on the thrombin-induced aggregation of washed pig platelets as well as on the release of adenine nucleotides and proteins was studied. The level in platelets of adenine nucleotides, mainly ADP and ATP, decreased rapidly following the exposure of platelets to a high dose of UV-A (0.5 W/cm2, 30 min). Through thrombin-induced aggregation of irradiated platelets was inhibited, the release reaction occurred. The amount of the released adenine nucleotides and proteins was, however, dependent on the dose of UV light. These findings suggest that UV-A light can stimulate the platelet release reaction.  相似文献   

5.
Blood platelets contain membrane-enclosed granules which have inside them high concentrations of 5-hydroxytryptamine (serotonin) along with adenine nucleotides and divalent metal ions. 19F n.m.r. of fluorinated serotonin incorporated into the granules of both human and pig intact platelets has shown that the motional state of the serotonin is restricted. Comparison with 31P n.m.r. experiments indicates that this restriction of motion is a consequence of high molecular weight aggregates formed by the adenine nucleotides and metal ions, and that it varies with the species from which the platelets are obtained. In the case of human platelet granules, at least, these high molecular weight aggregates are present in the absence as well as in the presence of serotonin. The biological significance of these data is briefly discussed.  相似文献   

6.
Stroke-prone spontaneously hypertensive rats (SHRSP) induce spontaneous osteoporosis. To elucidate the specific characteristics of bone metabolism, the SHRSP was compared with age matched Wistar-Kyoto (WKY) rats. We investigated the effects of prolonged swimming exercise training on bone mineral density (BMD) and metabolism in the SHRSP. Seven-week-old male SHRSP and WKY were divided into three groups; the sedentary control WKY group (n = 6, WKY), the sedentary control SHRSP group (n = 6, SP) and the swimming exercise training SHRSP group (n = 6, SWIM) (in pool with 60 min./day, 5 days/week for 12 weeks). The femoral BMD, bone mineral content (BMC), strength, Ca and P contents (%) of SHRSP were approximately 17, 27, 25, 20 and 9%, respectively, lower than that of WKY (p < 0.001). Serum alkaline phosphatase (AlP) had not changed between both of SP and WKY, but tartrate-resistant acid phosphatase (TrAcP) of SP approximately 3-fold higher than that of WKY (p < 0.05). Both serum calcium (Ca) and intact parathyroid hormone (i-PTH) were similar between SP and WKY. However, serum phosphate (P) of SP was approximately 18% lower than that of WKY (N.S.). These results suggested that SHRSP induces osteopenia by the bone turnover of the promoted osteoclast activity with disturbed phosphate homeostasis. On the other hand, the femoral BMD and strength were approximately 7% and 20%, respectively, decreased in the SWIM (p < 0.001), and femoral bone Ca and P contents (%) were also approximately 11% and 14%, respectively, lower than that of SP (p < 0.001). There were no significant difference between SWIM and SP on serum Ca, but serum P of SWIM was significantly lower than that of SP (p < 0.05). These results suggested that the prolonged swimming exercise training in the SHRSP induces more cruelly hypophosphatemia, and leading to osteopenia eventually. We conclude that SHRSP induces osteopenia with disturbance of phosphate homeostasis, and the prolonged swimming exercise in the SHRSP might deteriorate hypophosphatemia and osteopenia.  相似文献   

7.
N-(7-nitro-2,1,3-benzoxadiazol-4-yl) phosphatidylserine (NBD-PS), a fluorescent phospholipid synthesized from phosphatidylserine by reaction with NBD-chloride, caused platelet shape change and aggregation when added at micromolar concentrations to suspensions of washed human platelets in the absence of added fibrinogen. Platelet aggregation by NBD-PS was accompanied by thromboxane synthesis and secretion of contents from dense, alpha-, and lysosomal granules in the absence of appreciable platelet damage. Indomethacin completely inhibited NBD-PS-induced thromboxane synthesis, but platelet aggregation and [14C]serotonin secretion were only slightly inhibited. Neither inhibition of the ADP-dependent pathway with creatine phosphate/creatine kinase plus ATP, alone or in combination with indomethacin, nor maximum elevation of cyclic AMP by treatment with prostaglandin I2 and theophylline completely inhibited NBD-PS-induced platelet aggregation or [14C]serotonin secretion. Platelet effects of NBD-PS were specific in that neither phosphatidylserine nor lyso-NBD-PS were similarly active. The activation of platelets by NBD-PS is not attributable to the NBD moiety exclusively since acylation of the amino group with 5-dimethylaminonaphthalene-1-sulfonyl-chloride yielded a similarly active derivative. Dansylated phosphatidylethanolamine was also active. The findings indicate that NBD-PS and other N-substituted aminophospholipids can activate a central pathway of platelet secretion and aggregation that is independent of released ADP and thromboxane formation and is only partially controlled by platelet cyclic AMP.  相似文献   

8.
1. The formation of a stable fluorescent product between chloroacetaldehyde and adenine or its derivatives provides the basis of a rapid simple assay for total adenine compounds in blood platelets and in plasma. The assay will measure down to 200pmol of adenine nucleotides. An evaluation of the method established the optimum conditions for the production of maximum fluorescence. 2. Values obtained for total adenine compounds in platelets were 12.9nmol/10(8) cells in man and 7.8nmol/10(8) cells in rat. These closely agree with previous values for total platelet adenine nucleotides found by using a firefly luciferase assay, or a recycled NAD-linked photometric assay. This supports the concept that the chloroacetaldehyde reaction measures total adenine nucleotides in platelets. 3. Platelet aggregation induced by collagen was studied photometrically in 0.1ml volumes of citrated platelet-rich plasma, and total adenine nucleotides were assayed in platelets and plasma before and after aggregation. During aggregation 58% of adenine nucleotides were released from human platelets, and 36% from rat platelets. 4. The chloroacetaldehyde assay is no substitute for more sophisticated procedures, but is a simple sensitive means of monitoring the release of adenine nucleotides from blood platelets and is particularly valuable when small plasma samples must be used.  相似文献   

9.
In order to investigate the pathophysiological role of atrial natriuretic polypeptide (ANP) in genetic hypertensive rats, the atrial content and plasma concentration of ANP were measured by a sensitive radioimmunoassay (RIA) for rat ANP in 5-, 10- and 20-week-old spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) and compared to age-matched Wistar Kyoto rats (WKY). Atrial content of immunoreactive ANP (ir-ANP) tended to be higher in SHR and was already significantly higher in SHRSP than in WKY at 5 weeks of age. Atrial content in the hypertensive strains became significantly higher than in WKY when hypertension developed at 10 and 20 weeks. On the other hand, plasma ir-ANP in SHR was significantly lower than in WKY at 5 weeks, however, it became significantly higher in both SHR and SHRSP than in WKY at 10 and 20 weeks. These findings suggest that ANP release may increase to compensate for the elevation of blood pressure in SHR and SHRSP and that biosynthesis of ANP may be concomitantly stimulated, resulting in an increase in atrial ANP.  相似文献   

10.
In spontaneously hypertensive rat (SHR) aorta, prostacyclin is an endothelium-derived contracting factor contributing to the endothelial dysfunction. This study was designed to determine whether the impairment of the prostacyclin response is influenced by aging and whether such a dysfunction is observed in platelets. Isometric tension was measured in aortic rings, and aggregation was studied in platelet-rich plasma taken from 3-, 6-, and 15-mo-old Wistar-Kyoto rats (WKY) and SHR. In aorta from 3- and 6-mo-old WKY, prostacyclin and beraprost [prostacyclin receptor (IP) agonists] produced relaxations that were enhanced by Triplion (thromboxane-prostanoid receptor antagonist). In 15-mo-old WKY, the relaxations to beraprost were maintained, but not those to prostacyclin. In SHR aorta, prostacyclin or beraprost produced no or minor relaxations, which, in younger SHR, were enhanced by Triplion. In both strains, the relaxations were inhibited by CAY-10441 (IP receptor antagonist). The relaxations to forskolin and isoproterenol were reduced with aging. When compared with those of WKY, the relaxations to isoproterenol were reduced in 3- but not in 6- or 15-mo-old SHR, whereas those to forskolin were consistently diminished at any given age. Whatever the age, prostacyclin and beraprost produced CAY-10441-sensitive inhibitions of ADP-induced platelet aggregation. Both agonists were more potent in SHR than in WKY. Therefore, in platelets from WKY and SHR, the IP receptor-dependent antiaggregant response is functional and maintained during aging. In aorta from WKY those responses are reduced by aging and, in SHR, are already compromised at 3 mo. This dysfunction of the IP receptor is only partially explained by a general dysfunction of the adenylate cyclase pathway.  相似文献   

11.
T Nakano  K Hanasaki  H Arita 《FEBS letters》1988,234(2):309-312
Stimulation of rabbit platelets with U46619 induced platelet shape change, aggregation and secretion of ATP. However, S-145, which specifically binds to the thromboxane A2/prostaglandin H2 receptor like U46619, induced only shape change. Both compounds rapidly elevated cytoplasmic Ca2+ concentration although only U46619 evoked the formation of inositol phosphates. Chelating external Ca2+ with EGTA did not affect the S-145-induced platelet shape change while intracellular Ca2+ movement was severely reduced. These results suggest an essential role of phospholipase C in the induction of platelet aggregation and secretion and that some factor other than Ca2+ and phospholipase C participates in platelet shape change.  相似文献   

12.
The mode of phospholipase C activation in platelet cells induced by didecanoyl (C10)-phosphatidic acid (PA) was investigated with washed rabbit platelets. The C10-PA dose-dependently induced aggregation and serotonin secretion, as well as increases in cytoplasmic free Ca2+ concentration and 1,2-diacylglycerol formation. None of these responses was evoked unless Ca2+ had been added to the platelet suspension. Furthermore, under the conditions of various intracellular Ca2+ concentrations which were set by treatment of the cells with ionomycin and Ca2+, C10-PA promoted 1,2-diacylglycerol formation only at the Ca2+ concentration of 300 nM or higher, whereas thrombin induced the formation even at 100 nM Ca2+. These results suggest that PA activates platelet phospholipase C in cooperation with Ca2+ and contributes to platelet activation through such an effect.  相似文献   

13.
1. Variations in the concentration of Ca2+ [Ca2+] in the suspending medium have different effects on the responses of human and rabbit platelets to collagen. 2. When rabbit platelets are stimulated with a low concentration of collagen (0.5 micrograms/ml), aggregation, release of granule contents, and formation of thromboxane are maximal when the suspending medium contains [Ca2+] in the physiological range (0.5-2.0 mM), and very slight in a medium with no added Ca2+. 3. In contrast, human platelets respond most strongly when the suspending medium contains no added Ca2+ [( Ca2+] approx. 20 microM); this is attributable to the enhanced formation of thromboxane A2 (TXA2) upon close platelet-to-platelet contact in this medium. 4. When TXA2 formation is blocked by inhibition of cyclo-oxygenase with aspirin or indomethacin, rabbit platelet aggregation and release in response to 1.25-10 micrograms/ml collagen is also maximal at [Ca2+] of 0.5-2.0 mM and least at 20 microM; human platelets do not aggregate and the extent of release is relatively independent of [Ca2+]. 5. In 1 mM [Ca2+], use of apyrase and/or ketanserin with rabbit platelets in which TXA2 formation is blocked shows that released ADP and serotonin make large contributions to aggregation and release in response to high concentrations of collagen; human platelet aggregation is largely dependent on TXA2. 6. Use of fura-2-loaded platelets shows that the collagen-induced rise in cytosolic [Ca2+] is only slightly inhibited by aspirin or indomethacin in rabbit platelets, but almost completely inhibited in human platelets. 7. Responses of rabbit platelets to collagen are less dependent on TXA2 than those of human platelets. Released ADP and serotonin make major contributions to the responses of rabbit platelets to collagen.  相似文献   

14.
Ca2+, Mg2+-ionophores X537A and A23,187 (10(-7)-10(-6) M) induced the release of adenine nucleotides adenosine diphosphate (ADP, adenosine triphosphate (ATP), serotonin, beta-glucuronidase, Ca2+, and Mg2+ from washed human platelets. Enzymes present in the cytoplasm or mitochondria, and Zn2+ were not released. The rate of ATP and Ca2+ release measured by firefly lantern extract and murexide dye, respectively, was equivalent to that produced by the physiological stimulant thrombin. Ionophore-induced release of ADP, and serotonin was substantially (approximately 60%) but not completely inhibited by EGTA, EDTA, and high extracellular Mg2+, without significant reduction of Ca2+ release. The ionophore-induced release reaction is therefore partly dependent upon uptake of extracellular Ca2+ (demonstrated using 45Ca), but also occurs to a significant extent due to release into the cytoplasm of intracellular Ca2+. The ionophore-induced release reaction and aggregation of platelets could be blocked by prostaglandin E1 (PGE1) or dibutyryl cyclic AMP. The effects of PGE1, and N6, O2-dibutyryl adenosine 3':5'-cyclic monophosphoric acid (dibutyryl cAMP) were synergistically potentiated by the phosphodiesterase inhibitor theophylline. It is proposed that Ca2+ is the physiological trigger for platelet secretion and aggregation and that its intracellular effects are strongly modulated by adenosine 3':5'-cyclic monophosphoric acid (cyclic AMP).  相似文献   

15.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

16.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.  相似文献   

17.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

18.
Increased serum levels of immunoreactive thromboxane B2 (iTXB2) were observed in spontaneously hypertensive rats of the Okamoto-Aoki strain (SHR) compared with normotensive Wistar-Kyoto rats (WKY). Serum iTXB2 levels in whole blood allowed to clot at 37 degrees C for 1 hour were significantly greater in SHR than WKY at 8, 16-20, and 38 weeks of age, whereas formation of iTXB2 by thrombin-stimulated whole platelets from 6 16-week-old SHR and 6 age-matched WKY was 399 +/- 44 and 377 +/- 38 ng/10(9) platelets/30 min, respectively. No significant difference in radioconversion of exogenous arachidonic acid to TXB2 was observed in whole platelets from SHR (18.2 +/- 2.5%, n = 4) and WKY (20.1 +/- 3.0%, n = 4) at 16 weeks of age. These results support the proposal that enhanced ability of blood from SHR to generate iTXB2 is independent of the stage of hypertension development. This enhancement probably depended on factors or blood elements other than platelets since no difference in formation was observed on stimulation of whole platelets.  相似文献   

19.
We have observed that the addition of Ca2+ to platelets, permeabilized with saponin, promotes a drastic dephosphorylation of proteins and polyphosphoinositides without inducing platelet responses. Subsequent addition of thrombin could promote secretion of serotonin and aggregation in the absence of phospholipase C-induced breakdown of the inositol phospholipids and protein phosphorylation. This information indicates that activation of saponized platelets by thrombin is independent of the formation of second messengers derived from the phospholipase C-induced breakdown of the inositol phospholipids. The implications of this result for intact platelets are discussed.  相似文献   

20.
  • 1.1. Lipid peroxidation and membrane-related enzyme changes in the cerebral cortex of stroke-prone rats (SHRSP) and normotensive rats were examined at 5 and 20 weeks of age.
  • 2.2. In vivo formation of thiobarbituric acid-reactant substances was higher in SHRSP at 20 weeks of age and in vitro generation of free malondialdehyde was greater in SHRSP brains, both at 5 and 20 weeks of age, as compared with those in WKY.
  • 3.3. Membrane-associated enzymes such as Na/K-ATPase and 5'-nucleotidase activities were lower in 20-week-old SHRSP than in age-matched WKY.
  • 4.4. These results indicate how very prone the SHRSP brain is toward lipid peroxidation and subsequent membrane-related enzyme changes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号