首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of extracellular matrix (ECM) is a hallmark feature of vascular disease. We have previously shown that hyperglycemia induces the expression of B(2)-kinin receptors in vascular smooth muscle cells (VSMC) and that bradykinin (BK) and hyperglycemia synergize to stimulate ECM production. The present study examined the cellular mechanisms through which BK contributes to VSMC fibrosis. VSMC treated with BK (10(-8) M) for 24 h significantly increased alpha(2)(I) collagen mRNA levels. In addition, BK produced a two- to threefold increase in alpha(2)(I) collagen promoter activity in VSMC transfected with a plasmid containing the alpha(2)(I) collagen promoter. Furthermore, treatment of VSMC with BK for 24 h produced a two- to threefold increase in the secretion rate of tissue inhibitor of metalloproteinase 1 (TIMP-1). The increase in alpha(2)(I) collagen mRNA levels and alpha(2)(I) collagen promoter activity, as well as TIMP-1 secretion, in response to BK were blocked by anti-transforming growth factor-beta (anti-TGF-beta) neutralizing antibodies. BK (10(-8) M) increased the endogenous production of TGF-beta1 mRNA and protein levels. Inhibition of the mitogen-activated protein kinase (MAPK) pathway by PD-98059 inhibited the increase of alpha(2)(I) collagen promoter activity, TIMP-1 production, and TGF-beta1 protein levels observed in response to BK. These findings provide the first evidence that BK induces collagen type I and TIMP-1 production via autocrine activation of TGF-beta1 and implicate MAPK pathway as a key player in VSMC fibrosis in response of BK.  相似文献   

2.
Although bradykinin (BK) and insulin like growth factor-1 (IGF-1) have been shown to modulate the functional and structural integrity of the arterial wall, the cellular mechanisms through which this regulation occurs is still undefined. The present study examined the role of second messenger molecules generated by BK and IGF-1 that could ultimately result in proliferative or antiproliferative signals in vascular smooth muscle cells (VSMC).

Activation of BK or IGF-1 receptors stimulated the synthesis and release of prostacyclin (PGI2) leading to increased production of cAMP in VSMC. Inhibition of p42/p44mapk or src kinases prevented the increase in PGI2 and cAMP observed in response to BK or IGF-1, indicating a role for these kinases in the regulation of cPLA2 activity in the VSMC. Inhibition of PKC failed to alter production of PGI2 in response to BK, but further increased both p42/p44mapk activation and the synthesis of PGI2 produced in response to IGF-1. In addition, both BK and IGF-1 significantly induced the expression of c-fos mRNA levels in VSMC, and this effect of BK was accentuated in the presence a cPLA2 inhibitor. Finally, inhibition of cPLA2 activity and/or cyclooxygenase activity enhanced the expression of collagen I mRNA levels in response to BK and IGF-1 stimulation.

These findings indicate that the effect of BK or IGF-1 to stimulate VSMC growth is an integrated response to the activation of multiple signaling pathways. Thus, the excessive cell growth that occurs in certain forms of vascular disease could reflect dysfunction in one or more of these pathways.  相似文献   

3.
Lee HS  Son SM  Kim YK  Hong KW  Kim CD 《Life sciences》2003,72(24):2719-2730
Reactive oxygen species (ROS) have been implicated in the pathogenesis of vascular dysfunction in diabetes mellitus, and NAD(P)H oxidase is known as the most important source of ROS in the vasculatures. To determine whether NAD(P)H oxidase is a major participant in the critical intermediary signaling events in high glucose (HG, 25 mM)-induced proliferation of vascular smooth muscle cells (VSMC), we investigated in explanted aortic VSMC from rats the role of NAD(P)H oxidase on the HG-related cellular proliferation and superoxide production. VSMC under HG condition had increased proliferative capacity that was inhibited by tiron (1 mM), a cell membrane permeable superoxide scavenger, but not by SOD, which is not permeable to cell membrane. The nitroblue tetrazolium staining in the HG-exposed VSMC was more prominent than that of VSMC under normal glucose (5.5 mM) condition, which was significantly inhibited by DPI (10 microM), an NAD(P)H oxidase inhibitor, but not by inhibitors for other oxidases such as NADH dehydrogenase, xanthine oxidase, and nitric oxide synthase. In the VSMC under HG condition, the enhanced NAD(P)H oxidase activity with increased membrane translocation of Rac1 was observed, but the protein expression of p22phox and gp91phox was not increased. These data suggest that HG-induced changes in VSMC proliferation are related to the intracellular production of superoxide through enhanced activity of NAD(P)H oxidase.  相似文献   

4.
Migration and proliferation of vascular smooth muscle cells (VSMC) contribute to angiogenesis and the lesions of atherosclerosis. Since, vascular endothelial growth factor (VEGF) is overexpressed by VSMC in intima of atherosclerotic human coronary arteries, we determined if VEGF could stimulate VSMC migration and the intracellular signals involved. VEGF induced VSMC migration but had no significant activity on proliferation. VEGF increased intracellular reactive oxygen species (ROS), NF-kappaB activation and IL-6 expression. Blockade of the generation of intracellular ROS by antioxidants inhibited VEGF-induced NF-kappaB activation, IL-6 expression, and cell migration indicating that generation of ROS was required for NF-kappaB activation and the chemotactic activity of VEGF. Expression of a mutated, nondegradable form of inhibitor of NF-kappaB (IkappaB-alphaM) suppressed VEGF-triggered activation of NF-kappaB and upregulation of IL-6 as well as VSMC migration. Neutralization of IL-6 by its antibody significantly attenuated the migration stimulated by VEGF. Collectively, our data provide the first evidence that intracellular ROS and NF-kappaB are required for VEGF-mediated smooth muscle cell migration. Further, IL-6 induced by VEGF is involved in the ability of the growth factor to stimulate migration.  相似文献   

5.
Reactive oxygen species (ROS) have emerged as important signaling molecules in the regulation of various cellular processes. In our study, we investigated the effect of a wide range of ROS on Chinese hamster lung fibroblast (V79) cell proliferation. Treatment with H2O2 (100 microM), superoxide anion (generated by 1 mM xanthine and 1 mU/ml xanthine oxidase), menadione, and phenazine methosulfate increased the cell proliferation by approximately 50%. Moreover, a similar result was observed after partial inhibition of superoxide dismutase (SOD) and glutathione peroxidase. This upregulation of cell proliferation was suppressed by pretreatment with hydroxyl radical scavengers and iron chelating agents. In addition to ROS, treatment with exogenous catalase and SOD mimic (MnTMPyP) suppressed the normal cell proliferation. Short-term exposure of the cells to 100 microM H2O2 was sufficient to induce proliferation, which indicated that activation of the signaling pathway is important as an early event. Accordingly, we assessed the ability of H2O2 to activate mitogen-activated protein kinases (MAPK). Jun-N-terminal kinase (JNK) and p38 MAPK were both rapidly and transiently activated by 100 microM H2O2, with maximal activation 30 min after treatment. However, the activity of extracellular signal-regulated kinase (ERK) was not changed. Pretreatment with SB203580 and SB202190, specific inhibitors of p38 MAPK, reduced the cell proliferation induced by H2O2. The activation of both JNK and p38 MAPK was also suppressed by pretreatment with hydroxyl radical scavenger and iron chelating agents. Our results suggest that the trace metal-driven Fenton reaction is a central mechanism that underlies cell proliferation and MAPK activation.  相似文献   

6.
7.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

8.
Connective tissue growth factor (CTGF) was first identified as a 38-kDa cysteine-rich protein which can be specifically induced by TGF-beta and was recently found to be expressed abundantly in atherosclerotic lesions, but only marginally in normal vascular tissues. It was hypothesized that CTGF is one of the factors involved in the development of atherosclerotic lesions. In this study, we investigated the functions of CTGF protein in regulating the growth and migration of vascular smooth muscle cells (VSMC) and found that by overexpressing CTGF in VSMC, proliferation and migration rates were significantly increased. The accelerated growth and migration can be reversed by an anti-CTGF antibody. In addition, overexpression of CTGF also promotes VSMC to express more extracellular matrix protein collagen I and fibronectin. Our results indicate that CTGF is a growth factor for VSMC and it may play a similar role in promoting VSMC proliferation, migration, and formation of extracellular matrix, in vivo.  相似文献   

9.
AIM: We tested the hypothesis that 20-HETE production contributes to platelet derived growth factor (PDGF)-BB stimulated migration of VSMC in a cell culture model. METHODS: Studies were performed with A10 cells which are a rat vascular smooth muscle derived cell line. Migration was determined using a Boyden chamber chemotactic assay. RESULTS: Pre-treatment of cells with two doses of 20-HETE (100 and 500 nM) significantly increased PDGF-BB stimulated VSMC migration by 34-58% of control; whereas, prior incubation of cells with inhibitors of 20-HETE production, 17-ODYA (1-25 M) or HET0016 (100 nM), significantly decreased PDGF-BB stimulated migration by 40-90%. 20-HETE mediated increase in PDGF-BB migration was completely prevented by the 20-HETE antagonist, WIT-002. In order to determine what second messenger pathways are involved in the 20-HETE mediated stimulation of VSM migration, experiments were performed with specific inhibitors of tyrosine kinase (tyrphostin 25, 10 microM), mitogen-activated extracellular signal-regulated kinase (MEK, PD98059, 20 microM and U0126, 10 microM), protein kinase C (Myr-PKC, 50 microM), and phosphoinositide 3-kinases (PI3Ks) (wortmannin, 50 nM). Blockade of MEK and PI3K all abolished the increase in 20-HETE mediated migration. CONCLUSION: 20-HETE stimulates PDGF-mediated VSM migration acting through pathways that involve MEK and PI3K.  相似文献   

10.
A disintegrin and metalloproteinase 17 (ADAM17) regulates key cellular processes including proliferation and migration through the shedding of a diverse array of substrates such as epidermal growth factor receptor (EGFR) ligands. ADAM17 is implicated in the pathogenesis of many diseases including rheumatoid arthritis and cancers such as head and neck squamous cell carcinoma (HNSCC). As a central mediator of cellular events, overexpressed EGFR is a validated molecular target in HNSCC. However, EGFR inhibition constantly leads to tumour resistance. One possible mechanism of resistance is the activation of alternative EGFR family receptors and downstream pathways via the release of their ligands. Here, we report that treating human HNSCC cells in vitro with a human anti-ADAM17 inhibitory antibody, D1(A12), suppresses proliferation and motility in the absence or presence of the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Treatment with D1(A12) decreases both the endogenous and the bradykinin (BK)-stimulated shedding of HER ligands, accompanied by a reduction in the phosphorylation of HER receptors and downstream signalling pathways including STAT3, AKT and ERK. Knockdown of ADAM17, but not ADAM10, also suppresses HNSCC cell proliferation and migration. Furthermore, we show that heregulin (HRG) and heparin-binding epidermal growth factor like growth factor (HB-EGF) predominantly participate in proliferation and migration, respectively. Taken together, these results demonstrate that D1(A12)-mediated inhibition of cell proliferation, motility, phosphorylation of HER receptors and downstream signalling is achieved via reduced shedding of ADAM17 ligands. These findings underscore the importance of ADAM17 and suggest that D1(A12) might be an effective targeted agent for treating EGFR TKI-resistant HNSCC.  相似文献   

11.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

12.
Galanin (GAL) is a neuropeptide which is up-regulated following neuronal axotomy or inflammation. One subtype of GAL receptor (GalR2) is reported to be expressed in the brain's immune cell population, microglia. In the present study, we investigated the effect of GAL on microglial migration and compared the mechanism with that of bradykinin (BK). GAL significantly increased the migration of rat cultured microglia at 0.1 pM. The GAL-induced signal cascade was partly similar to that induced by BK. It was not dependent on G(i/o) protein but involved activation of protein kinase C, phosphoinositide 3-kinase and Ca(2+)-dependent K(+) channels. However, reverse-mode activation of the Na(+) /Ca(2+) -exchanger 1 was not involved in GAL-induced microglial migration, unlike BK-induced migration. Likewise, nominally-free extracellular Ca(2+) inhibited BK-induced migration but not GAL-induced migration. An inositol-1,4,5-triphosphate receptor antagonist significantly inhibited GAL-induced migration. GAL-induced Ca(2+) signaling did not induce nitric oxide synthase expression, but up-regulated class II major histocompatibility complex expression. These results indicate that activation of inositol-1,4,5-triphosphate receptor and increase in intracellular Ca(2+) are important for GAL-induced migration and immunoreactivity in microglia. The differences in down-stream signal transduction induced by GAL and BK suggest that GAL and BK may control distinct microglial functions under pathological conditions.  相似文献   

13.
Vessel wall remodeling is a complex phenomenon in which the loss of differentiation of vascular smooth muscle cells (VSMCs) occurs. We investigated the role of rat macrophage chemoattractant protein (MCP)-1 on rat VSMC proliferation and migration to identify the mechanism(s) involved in this kind of activity. Exposure to very low concentrations (1-100 pg/ml) of rat MCP-1 induced a significant proliferation of cultured rat VSMCs assessed as cell duplication by the counting of total cells after exposure to test substances. MCP-1 stimulated VSMC proliferation and migration in a two-dimensional lateral sheet migration of adherent cells in culture. Endogenous vascular endothelial growth factor-A (VEGF-A) was responsible for the mitogenic activity of MCP-1, because neutralizing anti-VEGF-A antibody inhibited cell proliferation in response to MCP-1. On the contrary, neutralizing anti-fibroblast growth factor-2 and anti-platelet-derived growth factor-bb antibodies did not affect VSMC proliferation induced by MCP-1. RT-PCR and Western blot analyses showed an increased expression of either mRNA or VEGF-A protein after MCP-1 activation (10-100 pg/ml), whereas no fms-like tyrosine kinase (Flt)-1 receptor upregulation was observed. Because we have previously demonstrated that hypoxia (3% O2) can enhance VSMC proliferation induced by VEGF-A through Flt-1 receptor upregulation, the effects of hypoxia on the response of VSMCs to MCP-1 were investigated. Severe hypoxia (3% O2) potentiated the growth-promoting effect of MCP-1, which was able to significantly induce cell proliferation even at a concentration as low as 0.1 pg/ml. These findings demonstrate that low concentrations of rat MCP-1 can directly promote rat VSMC proliferation and migration through the autocrine production of VEGF-A.  相似文献   

14.
Yao Y  Li R  Ma Y  Wang X  Li C  Zhang X  Ma R  Ding Z  Liu L 《Biochimica et biophysica acta》2012,1823(4):920-929
α-Lipoic acid (LA) has been shown to improve the diabetic cardiac symptoms. However, the underlying mechanisms have not been elucidated precisely. We have reported recently that LA potentially protected neurons from substance-induced apoptosis. We hypothesized that LA could attenuate cardiac cells death induced by oxidative stress derived from high glucose. To test this possibility, we examined the effects of LA on d-glucose/glucose oxidase (DG/GO, 30mM/5mU)-induced injury in rat cardiomyoblast H9c2 cells. We observed that LA pretreatment significantly increased cell viability in DG/GO-challenged cells. LA pretreatment also attenuated DG/GO-induced apoptosis as evidenced by decreases in both nuclear condensation and loss of mitochondrial potential. In addition, LA activated ERK1/2 and moderately increased ROS production. Blockade of ERK1/2 activation by PD98059 completely abolished LA-induced protection against DG/GO challenge. Inhibition of ROS by N-acetylcysteine abrogated LA-induced ERK1/2 activation and cytoprotection. Furthermore, we observed that the ROS production induced by LA was significantly slower and milder than that by DG/GO. Our results suggest that pretreatment with LA moderately increased ROS production to induce a preconditioning-like effect by ERK1/2 activation thereby increased tolerance of H9c2 cells to DG/GO challenge.  相似文献   

15.
Abstract

A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25?mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.  相似文献   

16.
The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels.  相似文献   

17.
PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.  相似文献   

18.
Bradykinin (BK) mimics ischemic preconditioning by generating reactive oxygen species (ROS). To identify intermediate steps that lead to ROS generation, rabbit cardiomyocytes were incubated in reduced MitoTracker Red stain, which becomes fluorescent after exposure to ROS. Fluorescence intensity in treated cells was expressed as a percentage of that in paired, untreated cells. BK (500 nM) caused a 51 +/- 16% increase in ROS generation (P < 0.001). Coincubation with either the BK B2-receptor blocker HOE-140 (5 microM) or the free radical scavenger N-(2-mercaptopropionyl)glycine (1 mM) prevented this increase, which confirms that the response was receptor mediated and ROS were actually being measured. Closing mitochondrial ATP-sensitive K+ (mitoKATP) channels with 5-hydroxydecanoate (5-HD, 1 mM) prevented increased ROS generation. BK-induced ROS generation was blocked by Nomega-nitro-m-arginine methyl ester (m-NAME, 200 microM), which implicates nitric oxide as an intermediate. Blockade of guanylyl cyclase with 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10 microM) aborted BK-induced ROS generation but not that from diazoxide, a direct opener of mitoKATP channels. The protein kinase G (PKG) blocker 8-bromoguanosine-3',5'-cyclic monophosphorothioate (25 microM) eliminated the effects of BK. Conversely, direct activation of PKG with 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (100 microM) increased ROS generation (39 +/- 15%; P < 0.004) similar to BK. This increase was blocked by 5-HD. Finally, the nitric oxide donor S-nitroso-N-acetylpenicillamine (1 microM) increased ROS by 34 +/- 6%. This increase was also blocked by 5-HD. In intact rabbit hearts, BK (400 nM) decreased infarction from 30.5 +/- 3.0 of the risk zone in control hearts to 11.9 +/- 1.4% (P < 0.01). This protection was aborted by either 200 microM m-NAME or 2 microM ODQ (35.4 +/- 5.7 and 30.4 +/- 3.0% infarction, respectively; P = not significant vs. control). Hence, BK preconditions through receptor-mediated production of nitric oxide, which activates guanylyl cyclase. The resulting cGMP activates PKG, which opens mitoKATP. Subsequent release of ROS triggers cardioprotection.  相似文献   

19.
Homocysteine found in the plasma of patients with coronary heart disease, induces vascular smooth muscle cell (VSMC) proliferation and increases deposition of extracellular matrix (ECM) components. Yet, the mechanism by which homocysteine mediates this effect and its role in vascular disease is largely unknown. We hypothesized that homocysteine induces ECM production via intracellular calcium release in VSMC. To test this hypothesis, aortic VSMC from Sprague-Dawley rats were isolated and characterized by positive labeling for vascular smooth muscle alpha-actin. Early passage cells (p2-3) were grown in monolayer on coverslips. Calcium transients were quantified with fura2/AM spectrofluorometry. Homocysteine induced intracellular calcium [Ca(2+)](i) transients with an EC(50) of 60 +/- 5 nM. The EC(50) for glutathione and cysteine were 10 and 100-fold lower, respectively. Depleting extracellular calcium did not alter the homocysteine effect on intracellular calcium; however, thapsigargin pretreatment, which depletes intracellular Ca(2+) stores, abolished the homocysteine effect, demonstrating its dependence on intracellular Ca(2+) stores. Extracellular sodium depletion significantly (P < 0.05) increased [Ca(2+)](i) also suggesting a possible role of sodium-calcium exchange in the process. To begin to elucidate the intracellular pathways by which homocysteine might act, VSMC were pretreated with specific inhibitors and stimulators prior to homocysteine stimulation. Staurosporine and phorbol myrisate acetate (PMA), potent simulators of protein kinase C, augmented the release of Ca(2+) by homocysteine. Interestingly, pretreatment with the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) greatly exacerbated the sensitivity of VSMC to homocysteine. In contrast, pretreatment with either the phospholipase A(2) activator neomycin, the antioxidant and hepatic hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase inhibitor, pravastatin, the tyrosine kinase inhibitor genestein, or the calcium channel blocker, felodipine completely inhibited the homocysteine-induced Ca(2+) signal in VSMC. This suggests the role of multiple signaling pathways in the homocysteine effect on VSMC Ca(2+). Effects of homocysteine on collagen production, as ascertained by immunoblot analysis, correlated with its effect in intracellular calcium. Regardless of the signaling pathways involved, homocysteine, by virtue of its role on VSMC proliferation and ECM deposition, has the potential to affect vascular reactivity. To determine the effect of homocysteine on the ability of VSMC to react to potent agonist such as angiotensin II, VSMC were pretreated with homocysteine and exposed to a range of angiotensin II concentrations which normally have no effect on intracellular Ca(2+). After homocysteine pretreatment, VSMC were extremely responsive to angiotensin II at concentrations well below the physiologic range. These data taken together suggested that an initial effect of homocysteine is to induce release of intracellular Ca(2+) in VSMC and may induce vascular reactivity. The transient in Ca(2+) correlates with the effect on ECM associated with homocysteine.  相似文献   

20.
4-Hydroxynonenal (HNE) accumulates at atherosclerotic lesions, but its role in the progression of atherosclerosis is not clear. Considering the role of matrix metalloproteinases (MMP) in plaque destabilization, we investigated the mechanism by which HNE induces MMP production in vascular smooth muscle cells (VSMC). VSMC stimulated by HNE (1.0 microM) produced enzymatically active MMP-2 with an increased promoter activity, which was abolished by mutation of the NF-kappaB binding site in the promoter region. The increased NF-kappaB activity with subsequent MMP-2 production by HNE was significantly attenuated by transfection with Akt siRNA as well as by pretreatment with the PI3K/Akt inhibitors LY294002 (10 microM) and SH-5 (1.0 microM). The phosphorylation of Akt occurred as early as 5 min in VSMC exposed to HNE and was markedly attenuated by inhibition of mitochondrial reactive oxygen species (ROS). Furthermore, the impact of mitochondrial ROS on HNE-induced Akt phosphorylation with subsequent MMP-2 production was also demonstrated in mitochondrial function-deficient VSMC, as well as in cells transfected with manganese superoxide dismutase. Taken together, these results suggest that HNE enhances MMP-2 production in VSMC via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号