首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the abilities of murine major histocompatibility complex-encoded antigens to induce in vitro hyporeactivity of T lymphocytes when these antigens are injected neonatally. Class I molecules, presented on F1 donor cells having an H-2 K or D region difference from recipients, can readily induce tolerogen-specific cytotoxic T cell hyporeactivity; as few as 1 X 10(6) neonatally injected donor cells suffice. In contrast, class II molecules, presented on F1 donor cells having an H-2 I region difference from recipients, can induce tolerogen-specific helper T cell hyporeactivity only when at least 1 X 10(7) neonatally injected donor cells are used, and then only in some of these recipients. Results from another in vitro assay system, taken in conjunction with these data, indicate that the molecular class of the tolerizing disparity, rather than the effector function of the responding cell type assayed, may be the most important factor in controlling the ease with which neonatally induced alloantigen tolerance can be achieved. In each type of tolerance described here, the hyporeactivity seen is antigen specific, in its induction and its expression; the implications of this fact for considerations of possible mechanisms of tolerance maintenance are discussed.  相似文献   

2.
This study was undertaken to determine whether bone marrow (BM) cells contain a cell population with the capacity to induce an unresponsiveness of T cells specific to the BM self-H-2 class I antigens in vivo, i.e., veto cell population. Recombinant or congenic mice were infused intravenously with H-2-incompatible BM cells. One to several weeks later, donor H-2-and irrelevant H-2-specific responses in mixed lymphocyte reaction cultures of recipient T cells were assessed. Transfusion of H-2-incompatible BM of C57BL/10 (B10) recombinant strains caused a long-lasting cytotoxic T lymphocyte (CTL) unresponsiveness to the donor class I antigens in recipient lymph node cells. When class I plus class II-disparate BM cells were transfused, an anti-donor class I CTL response and a response against a third-party class I antigen, which was presented on the stimulator cells coexpressing the donor class I and class II, were significantly suppressed. This linked suppression lasted for less than 2 weeks after transfusion. Transfusion of class I-alone-disparate BM induced the donor class I-specific CTL unresponsiveness, but not the linked suppression. The induction of linked suppression was prevented considerably by transfusing nylon wool-nonadherent BM or by treating recipients with cyclophosphamide 2 days before transfusion. An anti-third-party class I CTL response, stimulated in vitro with fully allogeneic spleen cells, was not hampered by the BM transfusion. Coculturing the lymph node (LN) cells obtained from the class I plus class II-disparate BM recipient with normal LN cells interfered with the generation of both anti-donor class I and anti-linked third-party class I CTL, whereas, coculturing LN cells from the class I alone-disparate BM recipient inhibited neither specificity of CTL generation. Transfusion of class I plus class II-disparate BM resulted in a significant suppression of the donor class II-specific proliferative response. In contrast, transfusion of class I alone-disparate BM did not suppress any proliferative responses, including even a "linked" third-party class II-specific response. Transfusion of bm 1, (B6 X bm 1)F1, or (bm 1 X bm 12)F1 BM to B6 did not induce unresponsiveness in bm 1-specific CTL responses. However, the transfusion resulted in a significant suppression of bm 1-reactive proliferative response of recipient LN cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Athymic (nude) mice were transplanted with cultured thymic fragments from syngeneic, allogeneic, and partially allogeneic (recombinant) mice. Lymphocyte proliferation and cytotoxicity in vitro were measured to assess immunologic reconstitution. Transplanted nude mice were immunocompetent whether donor and recipient were disparate for class I, class II, or both H-2 gene types. Furthermore, allotolerance for thymic H-2 class I antigens was achieved independently of class II antigen allotolerance. Class I antigen tolerance was not broken during lymphocyte responses to unrelated alloantigens, ruling out insufficient help as the tolerance mechanism. Splenocytes, isolated from nude mice transplanted with fully allogeneic or syngeneic thymic fragments and stimulated in vitro with trinitrophenyl-modified cells, displayed H-2-restricted, hapten-specific cytotoxicity. Cytotoxic cells from allotolerant mice were restricted to either host or thymic H-2 antigens, depending on the stimulating cell haplotype. Response levels for thymic and host trinitrophenyl-modified cells were comparable. We have shown that allogeneic thymic epithelium transplanted into adult nude mice can induce allotolerance to class I and II H-2 antigens equally, and permits T lymphocyte interaction with cells bearing thymic donor or host H-2 antigens. Our results are consistent with a model wherein T lymphocyte self-receptors retain their genomic repertoire but can be selectively mutated or expanded by appropriate H-2 antigen presentation by the thymus.  相似文献   

4.
To evaluate the role of IJ antigens in maintenance of the tolerant state in adult H-2 tolerant mice, we have attempted to abolish tolerance by injecting monoclonal antibodies (mab) specific for host, donor, or third party IJ antigens into adult H-2 tolerant mice. Abolition of tolerance was evidenced by the rejection of fresh test skin grafts bearing the tolerated antigens. Whole H-2 tolerant mice treated with anti-IJ mab specific for donor (allo) IJ antigens rejected their test skin grafts, indicating that tolerance had been abolished. When two other types of tolerant mice were tested, we found that mice tolerant of class II antigens alone, but not mice tolerant of an IJ thru D disparity, were susceptible to the anti-donor IJ mab treatment. In addition, adult tolerant mice were unaffected by treatment with either anti-host or anti-third party IJ mab. When tested in vitro, lymphoid cells from tolerant mice, the tolerance of which was abolished by anti-IJ mab, remained unresponsive to the tolerogen, just as untreated (control) tolerant mice, in several in vitro assays (e.g., mixed lymphocyte reaction, cytotoxic T cell precursor frequency and bulk cell-mediated lysis without growth factor). Mice treated with antidonor IJ mab, however, unlike mice treated with anti-host or third party IJ mab, were capable of generating tolerogen-specific T cells in the absence of exogenous growth factor. Thus in the strain combinations we used, adult mice tolerant of either the entire H-2 region or of the class II major histocompatibility complex region alone are susceptible to abolition of the tolerant state by treatment with anti-donor IJ mab. Coincidentally, lymphoid cells from these mice generate sufficient endogenous T helper activity to activate the tolerogen-specific cytotoxic T cells. We suspect that these latter cells may be responsible for rejection of grafts bearing the tolerated antigens.  相似文献   

5.
Induction of H-Y-specific cytotoxic T lymphocyte (CTL) responses in nonresponder female mice was attempted by i.v. injection of allogeneic male cells, followed by in vitro restimulation of recipient spleen cells with syngeneic male cells. Responses were obtained only in two strain combinations in which the recipients, although phenotypically nonresponders, carried responder alleles at class I major histocompatibility complex (MHC) loci, and the immunizing cells differed from the recipients at class II MHC loci. The two positive strain combinations were B10.A(2R) anti-B10.A(4R), and B10.GD anti-B10.D2(R101). In the first combination, both recipient and donor are nonresponders to H-Y, and the CTL are induced via a bystander effect of another CTL response to a previously undetected minor histocompatibility (H) antigen. This "carrier" antigen can only induce CTL against H-Y and itself when the immunizing cells express class II MHC molecules. Furthermore, the presence of H-Y and the carrier antigen on the same cell is a prerequisite for the generation of H-Y-specific CTL. In the second combination, the recipient is a nonresponder, whereas the donor is a responder. The two strains differ at only E alpha and E beta class II MHC loci. For the induction of CTL, H-Y and the foreign E molecule must be expressed on the same cells. Thus, the B10.D2(R101) cells that express E molecules on their surface probably provide the E-nonexpressor B10.GD recipients with a stimulus for the generation of H-Y-specific T helper cells. The data are consistent with the notion that antigen-specific class II MHC-restricted T helper cells are involved in the initiation of CTL responses to minor H antigens.  相似文献   

6.
In a previous study, we discovered a new mouse minor histocompatibility antigen encoded by a locus at 8.5 cM apart from the H-2 complex, and we have since named the locus H-42. One allele of H-42, which is named H-42a, had been elucidated, but the other alleles, which we tentatively named H-42b, have not been elucidated. In the present study, we explored MHC control on the anti-H-42a cytotoxic T lymphocyte (CTL) responsiveness in H-42b mice. In vivo immunization (i.v. injection) of H-42b mice with 5 to 30 X 10(6) spleen cells (SC) bearing allogeneic H-42a antigen but carrying H-2 complex (mouse MHC) matched with the H-42b mice failed to prime anti-H-42a CTL but induced stable and specific anti-H-42a CTL unresponsiveness, i.e., tolerance, in the H-42b recipient mice. In contrast, H-2 heterozygous H-42b F1 mice injected with SC bearing H-42a alloantigen on either of the parental H-2 haplotypes were effectively primed to generate anti-H-42a CTL. Exploration of the region or subregion in the H-2 complex of H-42a donor SC that should be compatible with H-42b recipient mice for the induction of their anti-H-42a CTL tolerance demonstrated that the compatibility at I region, most probably I-A subregion, but not at K, S, or D region, determined the induction of the tolerance. MHC class II compatible H-42a skin graft (SG) to H-42b mice, however, consistently primed the anti-H-42a CTL in the H-42b recipients. These results were discussed in several aspects, including uniqueness of MHC class II control on the CTL response to minor H-42a antigen, possibility of inactivation of responding anti-H-42a precursor CTL or helper T cells in H-42b mice by encountering the veto cells present in MHC class II-matched H-42a SC population, and significance of the present observations as a mechanism of CTL tolerance to self-components.  相似文献   

7.
Simian virus 40 large tumor (T) antigen contains three H-2Db-restricted (I, II/III, and V) and one H-2Kb-restricted (IV) cytotoxic T lymphocyte (CTL) epitopes. We demonstrate that a hierarchy exists among these CTL epitopes, since vigorous CTL responses against epitopes I, II/III, and IV are detected following immunization of H-2b mice with syngeneic, T-antigen-expressing cells. By contrast, a weak CTL response against the H-2Db-restricted epitope V was detected only following immunization of H-2b mice with epitope loss variant B6/K-3,1,4 cells, which have lost expression of CTL epitopes I, II/III, and IV. Limiting-dilution analysis confirmed that the lack of epitope V-specific CTL activity in bulk culture splenocytes correlated with inefficient expansion and priming of epitope V-specific CTL precursors in vivo. We examined whether defined genetic alterations of T antigen might improve processing and presentation of epitope V to the epitope V-specific CTL clone Y-5 in vitro and/or overcome the recessive nature of epitope V in vivo. Deletion of the H-2Db-restricted epitopes I and II/III from T antigen did not increase target cell lysis by epitope V-specific CTL clones in vitro. The amino acid sequence SMIKNLEYM, which species an optimized H-2Db binding motif and was found to induce CTL in H-2b mice, did not further reduce epitope V presentation in vitro when inserted within T antigen. Epitope V-containing T-antigen derivatives which retained epitopes I and II/III or epitope IV did not induce epitope V-specific CTL in vivo: T-antigen derivatives in which epitope V replaced epitope I failed to induce epitope V-specific CTL. Recognition of epitope V-H-2Db complexes by multiple independently derived epitope V-specific CTL clones was rapidly and dramatically reduced by incubation of target cells in the presence of brefeldin A compared with the recognition of the other T-antigen CTL epitopes by epitope specific CTL, suggesting that the epitope V-H-2Db complexes either are labile or are present at the cell surface at reduced levels. Our results suggest that processing and presentation of epitope V is not dramatically altered (reduced) by the presence of immunodominant CTL epitopes in T antigen and that the immunorecessive nature of epitope V is not determined by amino acids which flank its native location within simian virus 40 T antigen.  相似文献   

8.
T cell recognition of nonpolymorphic determinants on H-2 class I molecules   总被引:2,自引:0,他引:2  
Recognition of polymorphic determinants on class I or class II MHC Ag is required for T lymphocyte responses. Using cell-size artificial membranes (pseudocytes) bearing H-2 class I Ag it is demonstrated that T cells can, in addition, recognize nonpolymorphic determinants on class I proteins. Pseudocytes bearing class I alloantigen stimulate in vitro generation of secondary allogeneic CTL responses. At a suboptimal alloantigen surface density, incorporation of class I molecules identical to those of the responder cells (self-H-2) or from third-party cells resulted in dramatically enhanced responses, whereas incorporation of class II proteins had no effect. The receptor that mediates recognition of conserved class I determinants has not been identified, but results of antibody blocking studies are consistent with the Lyt-2/3 complex of CTL having this role. Thus, class I proteins on Ag-bearing cells can have two distinct roles in T cell activation, one involving recognition of polymorphic determinants by the Ag-specific receptor and the other involving recognition of conserved determinants.  相似文献   

9.
T cell-mediated cytotoxicity against dengue-infected target cells   总被引:1,自引:0,他引:1  
A cytotoxic T lymphocyte (CTL) response to dengue virus-infected target cells is described. Effector cells were generated in an in vitro secondary culture and appeared to be T cells possessing both the Lyt 1.1 and Lyt 2.1 surface antigens. A stronger CTL response was noted with the H-2k haplotype compared to H-2d, and H-2 compatibility was required between CTL and target cells. CTL generated showed some cross-reactivity with target cells infected with Japanese encephalitis virus (JEV), another flavivirus, but not with target cells infected with an alphavirus, Sindbis. The significance and importance of these findings are discussed.  相似文献   

10.
Alloreactivity of intragraft and peripheral blood lymphocytes from tolerant canine lung allograft recipients was examined. Tolerance was induced by variable periods of treatment with cyclosporine. Analysis of effector cells from lung allografts (obtained by bronchoalveolar lavage) revealed the absence of specific cytolytic T lymphocyte (CTL) activity and the presence of a low level of cytolytic activity detected in a lectin-dependent cell-mediated cytotoxicity assay. In contrast, high levels of specific CTL activity and lectin-dependent activity were detected in cell preparations from lung allografts undergoing rejection. Tolerant recipients retained normal ability to generate specific CTL activity to third party alloantigens in mixed lymphocyte cultures (MLC) but had diminished ability to generate CTL to donor alloantigens in recipient X donor MLC. Addition of exogenous interleukin 2 to these MLC was unable to restore donor-specific CTL activity. Lymphocytes from tolerant recipients were, however, capable of generating proliferative responses and lectin-dependent cytotoxicity on exposure to donor alloantigens in MLC. Evidence presented in this report suggests that the lectin-dependent cytolytic activity generated in these MLC is mediated by lymphokine-activated killer cells. Such cells are likely to be activated by interleukin 2 released in the proliferative response. The results support the proposal that the cyclosporine-induced tolerant state is characterized by the relative inability to respond against major histocompatibility complex class I antigens in contrast to class II antigens and/or minor histocompatibility antigens since MLC-induced CTL are directed, for the most part, against class I molecules.  相似文献   

11.
Nylon-wool-purified T cells from radiation chimeras cause a lethal graft-versus-host reaction (GVHR) in irradiated, bone-marrow-protected recipients only if the recipient shares a restriction element with the T-cell donor and also expresses antigens foreign to the donor. Class I molecules (H-2K and H-2D) can act as restriction elements, but restriction to class II molecules could not be demonstrated. However, class II molecules as well as H-2K and some non-H-2 determinants could serve as foreign antigens.  相似文献   

12.
The lytic activity of influenza virus-specific murine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), we found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.  相似文献   

13.
To elucidate the acquisition of self tolerance in the thymus, full-allogeneic thymic chimeras were constructed. Athymic C3H and BALB/c nude mice were reconstituted with the thymic lobes of BALB/c and B10.BR fetuses, respectively, that were organ cultured for 5 days in the presence of 2'-deoxyguanosine. T cells in these chimeras were tolerized to the host MHC in both MLR and CTL assays. In contrast, T cells in the chimeras exhibited split tolerance for the thymic MHC haplotype. CTL specific for class I MHC of the thymic haplotype were generated not only from the peripheral T cells of the chimeras but also from thymocytes re-populated in the engrafted thymic lobes. However, T cells in these chimeras responded poorly to the class II MHC of the thymic haplotype in a standard MLR assay. In a syngeneic MLR culture upon stimulation with enriched APC of the thymic haplotype, only 22 to 48% of the responses were mediated by CD4+ cells, and proliferations of CD4- cells were prominent. There were no haplotype-specific suppressor cells detected which would cause the unresponsiveness to the thymic class II MHC. These results indicated that the thymic lobes treated with 2'-deoxyguanosine were defective in the ability to induce the transplantation tolerance for the class I MHC expressed on the thymus, although the same thymic lobes were able to induce the transplantation tolerance for the thymic class II MHC.  相似文献   

14.
Virus-specific H-2-restricted cytotoxic T cells (CTL) have been found to discriminate between wild-type and mutant class I molecules. The only results reported concerning a hapten-self model, however, indicate that TNP-specific CTL do not discriminate between wild-type and mutant self determinants (7). In the present study, hapten-specific CTL generated against N-iodoacetyl-N'-(5-sulfonic-1-naphthyl) ethylene diamine-modified syngeneic cells (AED-self) were used to determine whether a hapten that is known to react with different cell surface sites than TNP can induce CTL that distinguish mutant H-2K and D molecules from those of wild type. The findings of this study indicate that H-2Kb-AED-self cytotoxic effector cells can discriminate between self-determinants of H-2Kb wild-type and the H-2bm1 and H-2bm11 mutants, but not between wild-type and the H-2bm6 and H-2bm9 mutants. H-2Db-AED-self effector cells were also found to discriminate between self-determinants of H-2Db wild-type and the H-2bm13 and H-2bm14 mutants. Furthermore, cold target competition experiments indicated that the bm1 and bm11 Kb products also lack some determinants recognized by anti-wild-type Kb TNP-specific CTL. These findings provide the first demonstration that hapten-self-specific effectors can detect alterations in H-2 mutant class I molecules. The results in the present report also support the hypothesis that haptens do not have to derivatize H-2 molecules in order to form antigens recognized by H-2-restricted CTL. These findings are discussed with respect to the involvement of self-determinants on MHC and non-MHC cell surface molecules.  相似文献   

15.
Major histocompatibility complex class I (MHC-I)-restricted CD8(+) cytotoxic T lymphocyte (CTL) responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. In particular, Gag-specific CTL responses have been shown to exert strong suppressive pressure on HIV/SIV replication. Additionally, association of Vif-specific CTL frequencies with in vitro anti-SIV efficacy has been suggested recently. Host MHC-I genotypes could affect the immunodominance patterns of these potent CTL responses. Here, Gag- and Vif-specific CTL responses during primary SIVmac239 infection were examined in three groups of Burmese rhesus macaques, each group having a different MHC-I haplotype. The first group of four macaques, which possessed the MHC-I haplotype 90-010-Ie, did not show Gag- or Vif-specific CTL responses. However, Nef-specific CTL responses were elicited, suggesting that primary SIV infection does not induce predominant CTL responses specific for Gag/Vif epitopes restricted by 90-010-Ie-derived MHC-I molecules. In contrast, Gag- and Vif-specific CTL responses were induced in the second group of two 89-075-Iw-positive animals and the third group of two 91-010-Is-positive animals. Considering the potential of prophylactic vaccination to affect CTL immunodominance post-viral exposure, these groups of macaques would be useful for evaluation of vaccine antigen-specific CTL efficacy against SIV infection.  相似文献   

16.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

17.
Nylon wool-passed bone marrow (NW-BM) cells treated with anti-Thy.1 monoclonal antibody and complement were added to a mixed lymphocyte culture which contained a limiting number of lymph node cells, as responder cells, and a sufficient number of mitomycin-c-treated allogeneic spleen cells as stimulator cells. NW-BM cells of the same MHC haplotype as responder cells enhanced the generation of allo-specific cytotoxic T lymphocytes (CTL) not only at a relatively high dose (3 x 10(3) cells/well) of responder cells, but also at an extremely dilute dose (1 x 10(3) cells/well). NW-BM cells which had a third-party MHC haplotype, a haplotype different from both responder and stimulator cells, also enhanced the generation of CTL at relatively high doses, but not at low doses, of responder cells. NW-BM cells which had MHC haplotypes identical with those of responder cells induced CTL from helper T cell-depleted responder cells, but NW-BM cells which had the third-party haplotype did not. These results showed that the enhancing effects of NW-BM cells of the same MHC haplotype as responder cells might be due to a specific helper effect and the enhancing effect of NW-BM cells of the third-party haplotype might be due to a nonspecific filler effect, which only conditioned the cultured cells. It was also found that, to exhibit the helper effect, NW-BM cells had to possess MHC class II, but not MHC class I, molecules in common with CTL precursors. This study showed that in the induction of CTL, prethymic NW-BM cells had a capability comparable to that of mature helper T cells.  相似文献   

18.
We addressed questions pertaining to the immunogenetics of an in vitro alloinduced suppressor T cell (Ts) previously shown to inhibit cytotoxic T-lymphocyte (CTL) development by suppressing CTL precursor proliferation. Using intra-MHC recombinant strains of B10 congenic mice, the requirements for H-2 differences to induce Ts activity, the antigen specificity of the Ts, and the genetic restriction of Ts function were studied. It was found that differences at the K, D, or I regions alone can induce strong suppressor activity. Suppression of CTL development does not appear to be genetically restricted since the Ts inhibit CTL from responder cells disparate at K, K and D, I, or K and I. The alloinduced Ts is specific for the antigen stimulating its induction, but also inhibits CTL responses against immunologically unrelated determinants, even between class I and class II antigens, provided those determinants are carried on cells expressing the original inducing antigen. Ts can be triggered by antigens present on the responder cells but absent on the stimulator cells, indicating that the suppressive signal may be exerted directly on the responder population without specific interaction with stimulator cells.  相似文献   

19.
The i.v. injection of parental T cells into F1 hybrid mice can result in a graft-vs-host (GVH)-induced immune deficiency that is Ag nonspecific and of long duration. The effect of the GVH reaction (GVHR) on the host's immune system depends on the class of F1 MHC Ag recognized by the donor cells. To determine the role of different subsets of donor-derived T cells in the induction of GVHR, donor spleen cells were negatively selected by anti-T cell mAb and C, and the cells were injected into F1 mice that differed from the donor by both class I and II MHC Ag or by class I or class II MHC only. The induction of GVHR across class I + II differences was found to require both L3T4+ and Lyt-2+ parental cells. Induction of GVHR across a class II difference required only L3T4+ parental T cells in the combination tested [B6-into-(B6 x bm12)F1]. In contrast, B6 Lyt-2+ cells were sufficient to induce GVHR across a class I difference in (B6 x bm1)F1 recipients. In addition, a direct correlation was observed between the cell types required for GVH induction and the parental T cell phenotypes detected in the spleens of the GVH mice. The number of parental cells detected in the unirradiated F1 hosts was dependent upon the H-2 differences involved in the GVHR. Induction of a class I + class II GVHR resulted in abrogation of both TNP-self and allogeneic CTL responses. In contrast, induction of a class II GVHR resulted in only a selective loss of TNP-self but not of allogeneic CTL function. Unexpectedly, the induction of a class I GVHR also resulted in the selective loss of the TNP-self CTL response. Thus, these class I and class II examples of GVH both result in the selective abrogation of L3T4+ Th cell function. The data are discussed in terms of respective roles of killer cells and/or suppressor cells in the induction of host immune deficiency by a GVHR, and of the selective deficiency in host Th cell function induced by different classes of GVHR.  相似文献   

20.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号